Please use this identifier to cite or link to this item:
https://elib.bsu.by/handle/123456789/322780
Title: | Second order stabilized two-step Runge-Kutta methods |
Authors: | Moisa, Andrew Faleichik, Boris |
Keywords: | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика |
Issue Date: | 2024 |
Publisher: | Elsevier B.V. |
Citation: | Journal of Computational and Applied Mathematics. 2023 Jul 21;437:115464–4. |
Abstract: | Stabilized methods (also called Chebyshev methods) are explicit methods with extended stability domains along the negative real axis. These methods are intended for large mildly stiff problems, originating mainly from parabolic PDEs. In this paper we present explicit two-step Runge-Kutta methods, which have an increased stability interval in comparison with one-step methods (up to 2.5 times). Also, we perform some numerical experiments to confirm the accuracy and stability of this methods. |
URI: | https://elib.bsu.by/handle/123456789/322780 |
DOI: | 10.1016/j.cam.2023.115464 |
Scopus: | 85166466857 |
Licence: | info:eu-repo/semantics/openAccess |
Appears in Collections: | Статьи факультета прикладной математики и информатики |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2303.16267v1.pdf | 1,48 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.