Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/306265
Заглавие документа: Neural Networks Interpretation Improvement
Авторы: Kroshchanka, Aliaksandr
Golovko, Vladimir
Тема: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика
ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика
Дата публикации: 2023
Издатель: Minsk : BSU
Библиографическое описание источника: Pattern Recognition and Information Processing (PRIP’2023). Artificial Universe: New Horisont : Proceedings of the 16 th International Conference, Belarus, Minsk, October 17–19, 2023 / Belarusian State University : eds. A. Nedzved, A. Belotserkovsky. – Minsk : BSU, 2023. – Pp. 45-48.
Аннотация: The paper is devoted to studying the issues of interpretability of neural network models. Particular attention is paid to the training of heavy models with a large number of parameters. A generalized approach for pretraining deep models is proposed, which allows achieving better performance in final accuracy and interpreting the model output and can be used when training on small datasets. The effectiveness of the proposed approach is demonstrated on examples of training deep neural network models using the MNIST dataset. The obtained results can be used to train fully connected type of layers and other types of layers after applying of flatting operation
URI документа: https://elib.bsu.by/handle/123456789/306265
ISBN: 978-985-881-522-6
Финансовая поддержка: This work was supported by the Belarusian Republican Foundation for Basic Research BRFBR, project F22KI-046.
Лицензия: info:eu-repo/semantics/openAccess
Располагается в коллекциях:2023. Pattern Recognition and Information Processing (PRIP’2023). Artificial Intelliverse: Expanding Horizons

Полный текст документа:
Файл Описание РазмерФормат 
45-48.pdf336,88 kBAdobe PDFОткрыть
Показать полное описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.