Logo BSU

Please use this identifier to cite or link to this item: https://elib.bsu.by/handle/123456789/306264
Title: Comparative Analysis of Semantic Segmentation Methods for Satellite Images Segmentation
Authors: Bu, Qing
Wan, Wei
Savitskaya, Elizaveta
Keywords: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика
ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика
Issue Date: 2023
Publisher: Minsk : BSU
Citation: Pattern Recognition and Information Processing (PRIP’2023). Artificial Universe: New Horisont : Proceedings of the 16 th International Conference, Belarus, Minsk, October 17–19, 2023 / Belarusian State University : eds. A. Nedzved, A. Belotserkovsky. – Minsk : BSU, 2023. – Pp. 332-337.
Abstract: This paper proposes a comparative analysis of different automatic semantic segmentation methods for satellite images segmentation on the Semantic Drone Dataset with 23 classes (paved-area, dirt, grass, gravel, water, rocks, pool, vegetation, roof, wall, window, door, fence, fence-pole, person, dog, car, bicycle, tree, bald-tree, ar-marker, obstacle, conflicting). We compare such models as U-net, U-net++, FPN, PAN, DeepLabV3, DeepLabV3+ and Transformer architecture model - SegFormer
URI: https://elib.bsu.by/handle/123456789/306264
ISBN: 978-985-881-522-6
Licence: info:eu-repo/semantics/openAccess
Appears in Collections:2023. Pattern Recognition and Information Processing (PRIP’2023). Artificial Intelliverse: Expanding Horizons

Files in This Item:
File Description SizeFormat 
332-337.pdf1,41 MBAdobe PDFView/Open
Show full item record Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.