Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/306238
Заглавие документа: Identifi cation of feature combinations in genome-wide association studies
Авторы: Chen, Yuxiang
Andrianov, Alexander
Tuzikov, Alexander
Тема: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика
ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика
Дата публикации: 2023
Издатель: Minsk : BSU
Библиографическое описание источника: Pattern Recognition and Information Processing (PRIP’2023). Artificial Universe: New Horisont : Proceedings of the 16 th International Conference, Belarus, Minsk, October 17–19, 2023 / Belarusian State University : eds. A. Nedzved, A. Belotserkovsky. – Minsk : BSU, 2023. – Pp. 223-227.
Аннотация: Association of single nucleotide polymorphisms (SNPs) with traits is the most popular method used in genome-wide association studies. SNPs with high association are often considered as a feasible locus for searching SNP combinations. However, this approach has a potential pitfall: correlated SNPs are usually not good partners to improve associations because their combinations do not enhance the quality of trait prediction. Therefore, a computational approach that could reduce the redundancy of SNPs is required. To solve this issue, an approach to reducing the SNP redundancy is proposed in this study. The feature relevance approach was used to select an optimized feature set which could generate the enhanced prediction performance. This approach was applied for the identification of mutations in Mycobacterium tuberculosis strains resistant to drugs. It was found that the combination of 2-4 SNPs could achieve an accuracy range from 65% to 90% to predict resistance for some drugs applied for the tuberculosis treatment
URI документа: https://elib.bsu.by/handle/123456789/306238
ISBN: 978-985-881-522-6
Лицензия: info:eu-repo/semantics/openAccess
Располагается в коллекциях:2023. Pattern Recognition and Information Processing (PRIP’2023). Artificial Intelliverse: Expanding Horizons

Полный текст документа:
Файл Описание РазмерФормат 
223-227.pdf233,13 kBAdobe PDFОткрыть
Показать полное описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.