Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ:
https://elib.bsu.by/handle/123456789/306225
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Li, Hao | |
dc.contributor.author | Ma, Jun | |
dc.contributor.author | Ren, Xunhuan | |
dc.contributor.author | Wang, Kaiyu | |
dc.date.accessioned | 2023-12-12T12:42:13Z | - |
dc.date.available | 2023-12-12T12:42:13Z | - |
dc.date.issued | 2023 | |
dc.identifier.citation | Pattern Recognition and Information Processing (PRIP’2023). Artificial Universe: New Horisont : Proceedings of the 16 th International Conference, Belarus, Minsk, October 17–19, 2023 / Belarusian State University : eds. A. Nedzved, A. Belotserkovsky. – Minsk : BSU, 2023. – Pp. 169-175. | |
dc.identifier.isbn | 978-985-881-522-6 | |
dc.identifier.uri | https://elib.bsu.by/handle/123456789/306225 | - |
dc.description.abstract | This paper elucidates an advanced, multi-threshold-based human fall detection algorithm, employing acceleration sensor data to revolutionize fall risk management in high-risk populations such as the elderly and mobility-impaired individuals. The data procured is meticulously analyzed and pre-processed, with various indicators employed in selecting appropriate parameters for data management. A key innovation of this study is the application of multiple thresholds, an enhancement leading to increased accuracy and reliability in distinguishing real falls from non-fall activities. Optimal thresholds were determined using a boxplot, facilitating a more precise fall detection system. Impressively, this approach achieved 95.45% fall detection accuracy, indicating its potential for practical integration. This research substantially contributes to the safety of individuals prone to falls | |
dc.language.iso | en | |
dc.publisher | Minsk : BSU | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика | |
dc.subject | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика | |
dc.title | Novel Fall Detection Algorithm based on Multi-Threshold Fall Model | |
dc.type | conference paper | |
Располагается в коллекциях: | 2023. Pattern Recognition and Information Processing (PRIP’2023). Artificial Intelliverse: Expanding Horizons |
Полный текст документа:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
169-175.pdf | 831,52 kB | Adobe PDF | Открыть |
Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.