Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ:
                
     
    https://elib.bsu.by/handle/123456789/306204| Заглавие документа: | Graph Neural Networks for Communication Networks: A Survey | 
| Авторы: | Zhao, Yangxiang Zhou, Yijun Han, Zhijie  | 
| Тема: | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика  | 
| Дата публикации: | 2023 | 
| Издатель: | Minsk : BSU | 
| Библиографическое описание источника: | Pattern Recognition and Information Processing (PRIP’2023). Artificial Universe: New Horisont : Proceedings of the 16 th International Conference, Belarus, Minsk, October 17–19, 2023 / Belarusian State University : eds. A. Nedzved, A. Belotserkovsky. – Minsk : BSU, 2023. – Pp. 90-94. | 
| Аннотация: | Communication networks are an important infrastructure in contemporary society. In recent years, based on the advancement and application of machine learning and deep learning in communication networks, the most advanced deep learning method, Graph Neural Network (GNN), has been applied to understand multi-scale deep correlations, provide generalization ability, and improve the accuracy indicators of predictive modeling. In this survey, we reviewed various issues using different graph based deep learning models in different types of communication networks. Optimize control strategies, including offloading strategies, routing optimization, resource allocation, etc. Finally, we discussed potential research challenges and future directions | 
| URI документа: | https://elib.bsu.by/handle/123456789/306204 | 
| ISBN: | 978-985-881-522-6 | 
| Финансовая поддержка: | This work was supported in part by Special project for Key R\&D and promotion of science, Technology Department of Henan Province (202102210327, 222102210272, 222102210052, 222102210007, \par222102210062, 212102210094, 232102211009, 222102210055), Postgraduate Education Reform and Quality Improvement Project of Henan Province under Grant (YJS2022JD26), Major Science and Technology Projects of Henan Province, and Major public welfare projects of Henan Province (201300210400). | 
| Лицензия: | info:eu-repo/semantics/openAccess | 
| Располагается в коллекциях: | 2023. Pattern Recognition and Information Processing (PRIP’2023). Artificial Intelliverse: Expanding Horizons | 
Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.

