Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ:
https://elib.bsu.by/handle/123456789/306200
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Karpenko, Anna D. | |
dc.contributor.author | Tuzikov, Alexander V. | |
dc.contributor.author | Vaitko, Thimothy D. | |
dc.contributor.author | Andrianov, Alexander M. | |
dc.contributor.author | Yang, Keda | |
dc.date.accessioned | 2023-12-12T12:42:09Z | - |
dc.date.available | 2023-12-12T12:42:09Z | - |
dc.date.issued | 2023 | |
dc.identifier.citation | Pattern Recognition and Information Processing (PRIP’2023). Artificial Universe: New Horisont : Proceedings of the 16 th International Conference, Belarus, Minsk, October 17–19, 2023 / Belarusian State University : eds. A. Nedzved, A. Belotserkovsky. – Minsk : BSU, 2023. – Pp. 68-73. | |
dc.identifier.isbn | 978-985-881-522-6 | |
dc.identifier.uri | https://elib.bsu.by/handle/123456789/306200 | - |
dc.description.abstract | A generative hetero-encoder model for computer-aided design of potential inhibitors of Bcr-Abl tyrosine kinase, the enzyme playing a key role in the pathogenesis of chronic myeloid leukemia, was developed. Training and testing of this model were carried out on a set of chemical compounds containing 2-arylaminopyrimidine, the major pharmacophore present in the structures of many small-molecule inhibitors of protein kinases. The neural network was then used for generating a wide range of new molecules and subsequent analysis of their binding affinity to the target protein using molecular docking tools. As a result, the developed neural network was shown to be a promising mathematical model for de novo design of small-molecule compounds potentially active against Abl kinase, which can be used to develop potent broad-spectrum anticancer drugs | |
dc.description.sponsorship | This study was supported by the State Program of Scientific Research “Convergence 2025” (subprogram “Interdisciplinary research and emerging technologies”, project 3.4.1). | |
dc.language.iso | en | |
dc.publisher | Minsk : BSU | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика | |
dc.subject | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика | |
dc.title | Deep generative model for anticancer drug design: Application for development of novel drug candidates against chronic myeloid leukemia | |
dc.type | conference paper | |
Располагается в коллекциях: | 2023. Pattern Recognition and Information Processing (PRIP’2023). Artificial Intelliverse: Expanding Horizons |
Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.