Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/306200
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorKarpenko, Anna D.
dc.contributor.authorTuzikov, Alexander V.
dc.contributor.authorVaitko, Thimothy D.
dc.contributor.authorAndrianov, Alexander M.
dc.contributor.authorYang, Keda
dc.date.accessioned2023-12-12T12:42:09Z-
dc.date.available2023-12-12T12:42:09Z-
dc.date.issued2023
dc.identifier.citationPattern Recognition and Information Processing (PRIP’2023). Artificial Universe: New Horisont : Proceedings of the 16 th International Conference, Belarus, Minsk, October 17–19, 2023 / Belarusian State University : eds. A. Nedzved, A. Belotserkovsky. – Minsk : BSU, 2023. – Pp. 68-73.
dc.identifier.isbn978-985-881-522-6
dc.identifier.urihttps://elib.bsu.by/handle/123456789/306200-
dc.description.abstractA generative hetero-encoder model for computer-aided design of potential inhibitors of Bcr-Abl tyrosine kinase, the enzyme playing a key role in the pathogenesis of chronic myeloid leukemia, was developed. Training and testing of this model were carried out on a set of chemical compounds containing 2-arylaminopyrimidine, the major pharmacophore present in the structures of many small-molecule inhibitors of protein kinases. The neural network was then used for generating a wide range of new molecules and subsequent analysis of their binding affinity to the target protein using molecular docking tools. As a result, the developed neural network was shown to be a promising mathematical model for de novo design of small-molecule compounds potentially active against Abl kinase, which can be used to develop potent broad-spectrum anticancer drugs
dc.description.sponsorshipThis study was supported by the State Program of Scientific Research “Convergence 2025” (subprogram “Interdisciplinary research and emerging technologies”, project 3.4.1).
dc.language.isoen
dc.publisherMinsk : BSU
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика
dc.titleDeep generative model for anticancer drug design: Application for development of novel drug candidates against chronic myeloid leukemia
dc.typeconference paper
Располагается в коллекциях:2023. Pattern Recognition and Information Processing (PRIP’2023). Artificial Intelliverse: Expanding Horizons

Полный текст документа:
Файл Описание РазмерФормат 
68-73.pdf296,43 kBAdobe PDFОткрыть
Показать базовое описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.