
68 

Deep generative model for anticancer drug design: 

Application for development of novel drug 

candidates against chronic myeloid leukemia  

Anna D. Karpenko 

United Institute of Informatics 

Problems,  

National Academy of Sciences of 

Belarus 

Minsk, Republic of Belarus 

rfe.karpenko@gmail.com 

 

 

Alexander V. Tuzikov 

United Institute of Informatics 

Problems,  

National Academy of Sciences of 

Belarus 

Minsk, Republic of Belarus 

tuzikov@newman.bas-net.by 

 

Thimothy D. Vaitko 

Belarusian State University  

Minsk, Republic of Belarus 

timvaitko@gmail.com 

 

 

Alexander M. Andrianov 

Institute of Bioorganic Chemistry 

National Academy of Sciences of Belarus        

Minsk, Republic of Belarus 

alexande.andriano@yandex.ru 

Keda Yang 

Shulan International Medical College,  

Zhejiang Shuren University,  

Hangzhou, China 

kdyang@zjsru.edu.cn 
 

Abstract — A generative hetero-encoder model for 

computer-aided design of potential inhibitors of Bcr-Abl 

tyrosine kinase, the enzyme playing a key role in the 

pathogenesis of chronic myeloid leukemia, was developed. 

Training and testing of this model were carried out on a set of 

chemical compounds containing 2-arylaminopyrimidine, the 

major pharmacophore present in the structures of many small-

molecule inhibitors of protein kinases. The neural network was 

then used for generating a wide range of new molecules and 

subsequent analysis of their binding affinity to the target 

protein using molecular docking tools. As a result, the 

developed neural network was shown to be a promising 

mathematical model for de novo design of small-molecule 

compounds potentially active against Abl kinase, which can be 

used to develop potent broad-spectrum anticancer drugs. 

 

Keywords — machine learning methods, deep 

learning, generative neural networks, hetero-encoders, 

Bcr-Abl tyrosine kinase, molecular docking, anticancer 

drugs, chronic myeloid leukemia   

I. INTRODUCTION 

Currently, machine learning methods have been 

significantly developed and are used to solve many 

problems related to various fields of science and technology. 

The use of these methods in bio- and cheminformatics has 

made it possible to accelerate the process of designing new 

drugs and increase the efficiency of pharmaceutical research 

programs [1, 2]. Modern machine learning algorithms are 

applied to predict the pharmacological properties of small 

molecules, obtain information on the molecular mechanisms 

of protein-protein and protein-ligand interactions, study 

quantitative structure-activity and structure-property 

relationships, predict protein structures and protein−ligand 

binding affinity, as well as for virtual screening of potential 

drugs [1, 2]. Among the most striking achievements of 

artificial intelligence technologies, it should be first noted 

the AlphaFold 2 deep neural network [3, 4], which is based 

on a new approach to machine learning and uses physical 

and biological data on the 3D structures of proteins and their 

amino acid sequences. Using this program, it turned out to 

predict at the atomic level the spatial structures of some 

proteins from their primary structures and these structural 

data are deposited in the AlphaFold protein database, which 

currently includes more than 2 million protein structures 

(https://alphafold.ebi.ac.uk) [5]. The use of predictive neural 

network models for screening of chemical databases 

allowed one to identify a number of antibacterial and 

antiviral agents, including HIV-1 and SARS-CoV-2 

inhibitors [6-8]. These models have also been successfully 

applied for screening of the FDA-approved drugs for their 

repurposing to treat COVID-19 [8] and drug-resistant 

tuberculosis [9]. In particular, a galicin molecule that is 

structurally different from conventional antibiotics and 

exhibits bactericidal activity against a wide phylogenetic 

spectrum of pathogens, including Mycobacterium 

tuberculosis and carbapenem-resistant enterobacteria, was 

recently identified using one of such deep learning neural 

networks [9]. The results of this study clearly demonstrated 

the effectiveness of using deep learning methods to predict 

potential drugs and, in particular, to expand the range of 

structurally different antibacterial agents [9]. The 

development of efficient deep learning algorithms has given 

impetus to the creation of a new line of research focused on 

the de novo design of molecules with desired 

pharmacological properties and synthetic availability [10-

15]. To date, a large number of generative deep learning 

models have been proposed, which have demonstrated the 

promise of their use for generating new drug candidates 

[10–15]. As successful applications of generative neural 

networks, the development of a Janus kinase 3 inhibitor and 

active in vivo inhibitors of discoidin 1 and 2 domain 

receptors should be noted [15]. However, despite significant 

progress in the development of deep learning algorithms, 

their potential in the field of pharmaceutical research has not 

yet been fully exploited. Development of generative deep 

learning models with different types of architectures and 

types of input data for de novo design of promising drug 

candidates is therefore of great relevance.  

In this study, a deep generative neural network based on 

a hetero-encoder model was developed and used in 

combination with molecular modeling tools for de novo 

design of small- molecule compounds that can inhibit the 

ATP-binding site of the native and mutant (T315I) Bcr-Abl 

tyrosine kinase, the enzyme playing a key role in the 
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pathogenesis of chronic myeloid leukemia (CML).                   

The first-, second- and third-generation drugs, such as 

imatinib, nilotinib, ponatinib, and dasatinib, directly 

interacting with the ATP-binding pocket of the enzyme are 

currently used in clinical practice to fight against CML [16-

20]. However, all these drugs exhibit high toxicity, causing 

a number of hematological and non-hematological side 

effects [21]. Additionally, most patients develop resistance 

to the drugs used, acquired after long-term chemotherapy 

[21]. In this regard, it is important to search for new 

inhibitors of Abl kinase, which have less toxicity and reduce 

the risk of possible resistance to the drugs used.  

To reach the object of view, the following studies were 

carried out: (i) development and implementation of the 

hetero-encoder architecture, an improved version of the 

autoencoder capable of simultaneously processing input data 

on a molecule in several different formats, allowing one  to 

get more stable and cost-effective generative models with 

improved results compared to autoencoders, (ii) assembly of 

a training library of small-molecule compounds potentially 

active towards the native and mutant Bcr-Abl tyrosine 

kinase which is resistant to a number of anticancer drugs 

used to treat patients with CML [21], (iii) training of the 

neural network on a set of drug-like compounds from the 

assembled molecular library followed by validation of the 

learning outcomes, (iv) generation of a wide range of 

potential Abl kinase ligands with a given threshold value of 

binding free energy (∆G) using the developed neural 

network, (v) molecular docking of the generated compounds 

with the ATP-binding site of the enzyme, (vi) analysis of the 

data from molecular docking and selection of lead 

compounds promising for the development of novel 

inhibitors that can block both Bcr-Abl and Bcr-AblT315I 

tyrosine kinase.  

II. MATERIALS AND METHODS 

A. Hetero-Encoder Architecture 

The developed neural network is based on the 

architecture of a hetero-encoder model, an autoencoder 

designed to solve the problems in which input data are 

presented in several different formats [22-24]. Such 

architecture makes it possible to obtain a more informative 

latent space due to a larger number of initial features, which 

expands the possibilities of finding dependencies between 

them in the process of training a hetero-encoder [22]. In the 

present study, a heteroencoder model with three encoders 

and two decoders which uses the Keras open library 

(https://keras.io) providing operation with artificial neural 

networks was implemented (Fig. 1) [25]. In this model, the 

input data are specified in the SMILES (Simplified 

Molecular Input Line Entry System) and canonical SMILES 

string formats [26-28], as well as a molecular characteristic 

vector (https://www.rdkit.org/docs/source/rdkit. 

Chem.Descriptors.htm) (Figure 1).  

Given the specifics of the input data, two sub-models 

were developed. The architecture with two layers of LSTM 

(Long Short-Term Memory) was chosen as encoders for the 

string formats SMILES and canonical SMILES. The input 

data are processed by two LSTM layers consisting of 128 

cells each, and the resulting embeddings for the string 

format are transferred to the fully connected layer (dense 

encoder) of the neural network (Fig. 1).  

The numerical characteristics of molecules are processed 

by a fully connected feed-forward neural network, which is 

represented by an encoder consisting of two fully connected 

layers with dimensions of 64 and 32, a batch normalization 

layer and an additional fully connected layer of 16 neurons, 

which creates embeddings for numerical features. These 

embeddings go to the concatenating layer, where they form 

one vector which is normalized on the batch normalization 

layer and transferred to a fully connected layer of 128 

neurons, and the desired value of the binding energy of a 

molecule to a therapeutic target is then set. The results of 

this layer operation, that is the processed embeddings and 

the value of ∆G, form a latent space with a dimension of 

129 (Fig. 1). 

 

 

Fig. 1.  Architecture of the developed hetero-encoder model. 

The developed hetero-encoder model includes two 

identical decoders designed to obtain a description of a 

molecule in two string formats from the latent space vectors 

(Fig. 1). The decoders operate as follows: the latent space 

vector is fed to two independent fully connected layers of 

dimension 128 each and, after passing them, is normalized 

on the batch normalization layers. The output generates two 

numeric vectors that are passed as initialization vectors to 

the LSTM layer, and the input of this layer additionally 

receives a string format (for each layer, it is own). The 

dimension of the LSTM layer in the decoders is also 128. 

After passing through the LSTM layer, the data are 

transmitted to a fully connected layer with a softmax 

activation function, which processes it in such a way as to 

obtain the probabilities of the next symbols as an output. For 

all other fully connected layers, the ReLu activation 

function is used, and for LSTM layers, the Tahn function is 

applied.  

The developed hetero-encoder model has the following 

specific features (Fig. 1):  

- During the preparation of the input data, characters are 

added to the beginning and end of the string for training the 

LSTM layers to “remember dependencies in strings”; 

therefore, the input of the hetero-encoder is a string without 

the last character, and the output is expected to be a string 

without the first character.  
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- A neuron has been added to the latent layer, which 

allows one to use the value of ∆G as an additional 

parameter; this neuron is not associated with encoders and is 

used only in decoders to generate molecules with the desired 

binding affinity to a molecular target.  

- Batch normalization layers are used for more efficient 

and stable training of the neural network in its coding and 

decoding parts.  

- At the stages of encoding and decoding, data formats 

are not related to each other, making it possible to expand 

the network architecture if it is necessary to repurpose it for 

other therapeutic targets.  

- All encoders and decoders are trained together and 

simultaneously in the general structure of the hetero-

encoder.  

B. Input Data Preparation  

To form a training molecular library, 120,000 

compounds containing 2-arylaminopyrimidine were selected 

from the chemical database PubChem 

(https://pubchem.ncbi.nlm.nih.gov/) [29]. Chemical 

structures of these compounds were then converted to the 

SMILES and canonical SMILES formats. SMILES gives 

information on the composition and chemical structure of a 

molecule using an ASCII character string, while canonical 

SMILES is a version of the SMILES specification including 

canonization rules that allow the molecular formula of any 

substance to be written in an unambiguous way. These rules 

concern the choice of the first atom in the record, the 

direction of bypassing molecular cycles, and the choice of 

the direction of the molecule main chain at branching. 

The resulting molecular descriptors were integrated into 

the training set and then transformed and filtered using the 

procedure described below. For each molecule, the lengths 

of string formats were checked, and, in cases where they 

were outside the range of 35–75 characters, the molecule 

was removed from the data set. Further, all atoms in the 

string record were changed to their single-character 

equivalents to prevent additional difficulties in the operation 

of the neural network. The first characters of all strings were 

then replaced with a new string opening character, which 

had not previously been found in the sample, and 

termination characters were added to all strings, moreover, 

in such a way that all strings after conversion had the same 

lengths. After that, the strings were converted to vector 

format. First, for each string format, unique characters were 

extracted and each of them was assigned a unique index 

within the data format. After that, each character of the 

string was replaced by a numeric vector with a dimension 

equal to the number of unique characters in the format, and 

consisting of zeros and a single one in place of the character 

index, i.e. each row was represented as a matrix of zeros and 

ones (this method is also known as One-Hot-Encoding; 

https://machinelearningmastery.com/why-one-hot-encode-

data-in-machine-learning/). In the case of numerical 

embeddings, a standardization procedure was used to 

balance their impact on the learning process. 

After filtering, a sample of 108,410 molecules was 

obtained in the formats chosen for training the neural 

network. Molecular docking program AutoDock Vina 

(https://vina.scripps.edu) [30] was then used to generate 

complexes of these molecules with the structure of Bcr-Abl 

tyrosine kinase in the crystal (https://www.rcsb.org; PDB 

ID: 3OXZ), as well as to calculate the values of ∆G. 

Molecular docking was carried out in the approximation of 

rigid receptor and flexible ligands. The grid box for docking 

included the ATP-binding site of the enzyme and had the 

following parameters: ΔX = 31 Å, ΔY = 23 Å, ΔZ = 23 Å 

centered at X = 18 Å, Y = 8 Å, Z = 6 Å. The value of the 

exhaustiveness parameter setting the number of individual 

sample runs was equal to 100 [30]. The prepared training 

library including 108,410 compounds and the corresponding 

values of ∆G formed the dataset for training and testing the 

neural network, which was divided into training and testing 

subsets in the proportion of 80% and 20%, respectively, of 

the total number of compounds. 

C.  Hetero-Encoder Training  

The hetero-encoder model included 784,537 parameters 

(weights), of which 781,369 parameters were used to train 

the neural network. In the learning process, the loss function 

(LF) of the following form was used:  

( ) ( ) 0.1 ( ),LF s CCE s CCL s= +   

where CCE(s) is the categorical cross entropy [31], s is a 

molecule in the SMILES format, and CCL(s) 

(CustomChemLoss) is the function that imposes penalties 

for violations of a molecule stereochemistry and the absence 

of 2-arylaminopyrimidine in its chemical structure. The 

value of the weight factor for the penalty function was 

chosen by sorting through a discrete number of coefficients 

aimed at the determination of the value of this parameter 

providing stability of the neural network training. 

The categorical cross entropy CCE(s) was calculated 

using the formula 
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where p(si) and q(si) are the true and predicted probabilities 

of generating the character si of the string s, respectively. 

The CCL(s) penalty function was calculated using the 

following criteria: 
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During the learning process, the loss function for the 

training set varied from 1.867 to 1.0375, and, for the testing 

set, it changed from 1.943 to 1.0445. A method for 

stochastic optimization Adam [32] was used as an 

optimizer. 

The following parameters were used to train the hetero-

encoder:  

− Factor of conservation of the first moment 1 was 

equal to 0.9;  

− Factor of conservation of the second moment 2 was 

set to 0.999; 

− Smoothing parameter  was equal to 10-7;                                                                                                                                      

− Object containing information about the computing 

node  was equal to 0.005;                                                                           

− Initial value of learning rate was set to 0.005;                                                                                                  

− Number of complete iterations of the network training 

was equal to 25;                      
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− Sub-sample size at one training step was equal to 256. 

Graphs of the loss function for the training and testing 

datasets indicate their similarity and final convergence, 

which allows one to conclude that the neural network was 

successfully trained and there was no retraining (Fig. 2). 

 

 

Fig. 2. Training and validation losses for the developed hetero-encoder 

model. 

D. Compound Generation  

The developed hetero-encoder was used to generate a 

wide range of high-affinity ligands of Bcr-Abl tyrosine 

kinase for subsequent identification of potential inhibitors of 

this enzyme by molecular docking methods. To implement 

the generation process, a representation of the latent space 

was obtained using the coding part of the model from the 

molecules of the training library with the values of ∆G 

lower than −9 kcal/mol. Normally distributed noise was then 

introduced into the resulting vectors to generate new latent 

vectors, which, together with a given threshold energy, were 

fed to the decoding part of the model as initializing vectors. 

At the same time, the start symbol for symbol-by-symbol 

generation was the line start symbol added earlier each time. 

Characters were generated sequentially until a line ending 

character was obtained. As a result of the hetero-encoder 

operation, linear SMILES representations for 1,117 

molecules were obtained, which were cleared of duplicates, 

checked for correctness, interpretability, and presence of 2-

arylaminopyrimidine using the RDKit module 

(http://www.rdkit.org/) [33] and transformed from the 

SMILES format to chemical structures. After filtration 

procedure, 1,083 compounds were selected and their 

potential inhibitory activity against Bcr-Abl and Bcr-

AblT315I tyrosine kinase was evaluated by molecular docking 

tools. 

III. RESULTS AND DISCUSSION 

To evaluate the efficiency of the hetero-encoder 

operation, complexes of the generated compounds with the 

X-ray structures of Bcr-Abl tyrosine kinase (PDB ID: 

3OXZ; https://www.rcsb.org) and its mutant form Bcr-

AblT315I (PDB ID: 3OY3; https://www.rcsb.org) were built 

using the AutoDock Vina program (https://vina.scripps.edu). 

Molecular docking was performed via the computational 

protocol identical to that used for the formation of the 

training dataset. Under the calculation data, the generated 

compounds showed the values of binding energies to the 

native and mutant Bcr-Abl tyrosine kinase ranging from 

−6.5 to −13.8 kcal/mol. At the same time, 569 molecules 

with the values of energy from −9.0 to −13.8 kcal/mol were 

selected for the further analysis. For these molecules, a more 

accurate assessment of the protein-ligand binding affinity 

was performed using three scoring functions, namely 

AutoDock Vina [30], NNScore 2.0 [34], and RF-Score-4 

[35]. For this purpose, the ranks of all compounds were 

determined according to each scoring function and the value 

of the exponential consensus rank (ECR) was calculated for 

each compound by the formula [36] 

1
exp( ),

sf

sf sf sf

rank
ECR

 
=  −

 

where 
sfrank  is the rank of the compound according to the 

scoring function sf, 
sf  is the parameter that controls the 

influence of the scoring function sf on the results of 

consensus selection (ECR was calculated using 10sf =  for 

all considered sf, since the contributions of the individual 

scoring functions were taken equal).  

To identify compounds potentially active against both 

therapeutic targets, cross exponential consensus rank 

(crossECR) was calculated for all selected molecules using 

the formula 

1 2

1 2

( ) ( )
( ) ,

{ ( )} { ( )}i i

ECR i ECR i
crossECR i

max ECR i max ECR i
= +  

where 
1( )ECR i is the ECR value of ligand i for the first 

target (native Abl kinase), and 
2 ( )ECR i is the ECR value of 

ligand i for the second target (mutant Abl kinase).  

Molecules with the low crossECR values were assigned 

to the group of promising drug candidates, dual-targeted 

anticancer compounds able to inhibit the catalytic activity of 

the native and mutant Bcr-Abl tyrosine kinase. Analysis of 

the data from molecular docking revealed four lead 

compounds that showed a high-affinity binding to the both 

considered therapeutic targets. These compounds are 

characterized by the low values of ∆G predicted for the 

ligand/Bcr-Abl complexes using classical and machine-

learning scoring functions, which are comparable with those 

calculated by the same computational protocol for the potent 

FDA-approved anticancer drug Ponatinib (Table I). These 

findings testify to that the developed neural network is a 

promising computational model for de novo design of small- 

molecule compounds potentially active against Bcr-Abl and 

Bcr-AblT315I tyrosine kinase, which can be used to develop 

novel, potent and broad-spectrum anticancer agents. 

IV. CONCLUSION 

The hetero-encoder model was developed to generate 

novel potential inhibitors of Bcr-Abl tyrosine kinase, the 

enzyme playing a key role in the pathogenesis of CML. The 

neural network was trained and tested and the results of its 

operation were analyzed. In the process of validation of the 

neural network, 1,083 molecules were generated and their 

binding affinity to the catalytic site of the native and mutant 

Bcr-Abl tyrosine kinase was evaluated using molecular 

docking tools.  

As a result, four lead compounds were identified 

presenting considerable interest for further theoretical and 
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experimental studies, including computer-based generation 

of their modified forms with improved pharmacological 

properties, synthesis and detailed biomedical assays.   
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TABLE I. CrossECR VALUES AND BINDING ENERGIES FOR FOUR NEURAL NETWORK-GENERATED COMPOUNDS I−IV 

AND PONATINIB (V) IN THE COMPLEXES WITH THE NATIVE AND MUTANT BCR-ABL TYROSINE KINASE I 
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