Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/291860
Заглавие документа: Posterior predictive model checking using formal methods
Авторы: Vana, L.
Visconti, E.
Nenzi, L.
Cadonna, A.
Kastner, G.
Parzer, R.
Тема: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика
ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика
Дата публикации: 2022
Издатель: Minsk : BSU
Библиографическое описание источника: Computer Data Analysis and Modeling: Stochastics and Data Science : Proc. of the XIII Intern. Conf., Minsk, Sept. 6–10, 2022 / Belarusian State University ; eds.: Yu. Kharin [et al.]. – Minsk : BSU, 2022. – Pp. 205.
Аннотация: We propose an interdisciplinary framework, Bayesian formal predictive model checking (Bayes FPMC), which combines Bayesian predictive inference, a well established tool in statistics, with formal verification methods rooting in the computer science community. Bayesian predictive inference allows for coherently incorporating uncertainty about unknown quantities by making use of methods or models that produce predictive distributions which in turn inform decision problems. By formalizing these problems and the corresponding properties, we can use spatio-temporal reach and escape logic to probabilistically assess their satisfaction. This way, competing models can directly be ranked according to how well they solve the actual problem at hand. The approach is illustrated on an urban mobility application, where the crowdedness in the center of Milan is proxied by aggregated mobile phone traffic data. We specify several desirable spatio-temporal properties related to city crowdedness such as a fault tolerant network or the reachability of hospitals. Furthermore, possible extensions of the framework are conceptually introduced and exemplified on simulated data
URI документа: https://elib.bsu.by/handle/123456789/291860
ISBN: 978-985-881-420-5
Лицензия: info:eu-repo/semantics/restrictedAccess
Располагается в коллекциях:2022. Computer Data Analysis and Modeling: Stochastics and Data Science

Полный текст документа:
Файл Описание РазмерФормат 
205.pdf192,44 kBAdobe PDFОткрыть
Показать полное описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.