Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ:
https://elib.bsu.by/handle/123456789/289979
Заглавие документа: | Bending of an elastic three-layer plate with a hole connected to the soil foundation |
Авторы: | Starovoitov, E. I. Zhuravkov, M. A. Pronina, P. F. |
Тема: | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Физика |
Дата публикации: | 2021 |
Издатель: | National Academy of Sciences of the Republic of Kazakhstan |
Библиографическое описание источника: | News Natl Acad Sci Repub Kaz Ser Geol Tech Sci 2021;1(445):164-171. |
Аннотация: | The relevance of this paper is explained by a demand for the development of mechanical and mathematical models and methods for calculating the stress-strain state of the sandwich structural elements. The statement of the boundary value problem on the deformation of a circular sandwich plate with a central hole, connected to the soil foundation, was given. To describe the kinematics of an asymmetric plate pack, the broken line hypotheses are accepted. In a relatively thick lightweight core, the normal does not change its length, remains rectilinear, but rotates through some additional angle. Tuff, coarse grained soil, granite, and gneiss are accepted as the soil foundation. The bearing reaction is described by the Winkler model. The system of equilibrium equations is obtained by the variational method. Its solution is written in displacements through Kelvin functions. A numerical parametric analysis of displacements and stresses in the plate is carried out, their dependence on the type of soil foundation is shown. |
URI документа: | https://elib.bsu.by/handle/123456789/289979 |
DOI документа: | 10.32014/2021.2518-170X.23 |
Scopus идентификатор документа: | 85100372059 |
Лицензия: | info:eu-repo/semantics/openAccess |
Располагается в коллекциях: | Кафедра общей физики (статьи) |
Полный текст документа:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
164-171.pdf | 509,15 kB | Adobe PDF | Открыть |
Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.