Logo BSU

Please use this identifier to cite or link to this item: https://elib.bsu.by/handle/123456789/289601
Title: ФУНКЦИОНАЛЬНОЕ ДИФФЕРЕНЦИРОВАНИЕ ИНТЕГРАЛЬНЫХ ОПЕРАТОРОВ СПЕЦИАЛЬНОГО ВИДА И НЕКОТОРЫЕ ВОПРОСЫ ОБРАТНОГО ИНТЕРПОЛИРОВАНИЯ
Other Titles: FUNCTIONAL DIFFERENTIATION OF INTEGRAL OPERATORS OF SPECIAL FORM AND SOME QUESTIONS OF THE INVERSE INTERPOLATION / Ignatenko, Marina V., Yanovich, Leonid A.
Authors: Игнатенко, М. В.
Янович, Л. А.
Keywords: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика
Issue Date: 2021
Publisher: Belaruskaya Navuka
Citation: Proc Natl Acad Sci Belarus Phys Math Ser 2021;57(4):401-416.
Abstract: This article is devoted to the problem of operator interpolation and functional differentiation. Some information about the variational derivatives and explicit formulas for the exact solutions of the simplest equations containing the first variational derivatives of the required functional are given. For functionals defined on sets of functions and square matrices, various interpolating polynomials of the Hermitе type with nodes of the second multiplicity, which contain the first variational derivatives of the interpolated operator, are constructed. The presented solutions of the Hermitе interpolation problems are based on the algebraic Chebyshev system of functions. For analytic functions with an argument from a set of square matrices, explicit formulas for antiderivatives of functionals are obtained. The solution of some differential equations with integral operators of a special form and the first variational derivatives is found. The problem of the inverse interpolation of functions and operators is considered. Explicit schemes for constructing inverse functions and functionals, including the case of functions of a matrix variable, obtained using certain well-known results of interpolation theory, are demonstrated. Data representation is illustrated by a number of examples.
URI: https://elib.bsu.by/handle/123456789/289601
DOI: 10.29235/1561-2430-2021-57-4-401-416
Scopus: 85124274918
Licence: info:eu-repo/semantics/openAccess
Appears in Collections:Статьи факультета прикладной математики и информатики

Files in This Item:
File Description SizeFormat 
608-1244-1-SM.pdf567,69 kBAdobe PDFView/Open
Show full item record Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.