Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/289484
Заглавие документа: Detection of Appearance and Behavior Anomalies in Stationary Camera Videos Using Convolutional Neural Networks
Авторы: Chen, H.
Bohush, R.
Kurnosov, I.
Weichen, Y.
Ablameyko, S.
Тема: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика
Дата публикации: 2022
Издатель: Pleiades journals
Библиографическое описание источника: Pattern Recogn Image Anal 2022;32(2):254-265.
Аннотация: The automatic detection and tracking of appearance and behavior anomalies in video surveillance systems is one of the promising areas for the development and implementation of artificial intelligence. In this paper, we present a formalization of these problems. Based on the proposed generalization, a detection and tracking algorithm that uses the tracking-by-detection paradigm and convolutional neural networks (CNNs) is developed. At the first stage, people are detected using the YOLOv5 CNN and are marked with bounding boxes. Then, their faces in the selected regions are detected and the presence or absence of face masks is determined. Our approach to face-mask detection also uses YOLOv5 as a detector and classifier. For this problem, we generate a training dataset by combining the Kaggle dataset and a modified Wider Face dataset, in which face masks were superimposed on half of the images. To ensure a high accuracy of tracking and trajectory construction, the CNN features of the images are included in a composite descriptor, which also contains geometric and color features, to describe each person detected in the current frame and compare this person with all people detected in the next frame. The results of the experiments are presented, including some examples of frames from processed video sequences with visualized trajectories for loitering and falls.
URI документа: https://elib.bsu.by/handle/123456789/289484
DOI документа: 10.1134/S1054661822020067
Scopus идентификатор документа: 85133648999
Финансовая поддержка: Тhe Public Welfare Technology Applied Research Program of Zhejiang Province (LGF19F020016), the National High-End Foreign Experts Program (G2021016028L, G2021016002L, and G2021016001L) and Zhejiang Shuren University Basic Scientific Research Special Funds.
Лицензия: info:eu-repo/semantics/openAccess
Располагается в коллекциях:Статьи факультета прикладной математики и информатики

Полный текст документа:
Файл Описание РазмерФормат 
S1054661822020067.pdf1,82 MBAdobe PDFОткрыть
Показать полное описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.