Logo BSU

Please use this identifier to cite or link to this item: https://elib.bsu.by/handle/123456789/289138
Title: Design of cross-linked polyisobutylene matrix for efficient encapsulation of quantum dots
Authors: Prudnikau, Anatol
Shiman, Dmitriy I.
Ksendzov, Evgenii
Harwell, Jonathon
Bolotina, Ekaterina A.
Nikishau, Pavel A.
Kostjuk, Sergei V.
Samuel, Ifor D. W.
Lesnyak, Vladimir
Keywords: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Химия
Issue Date: 2021
Publisher: Royal Society of Chemistry
Citation: Nanoscale Adv 2021;3(5):1443-1454.
Abstract: Photoluminescent quantum dots (QDs) are a prominent example of nanomaterials used in practical applications, especially in light-emitting and light-converting devices. Most of the current applications of QDs require formation of thin films or their incorporation in solid matrices. The choice of an appropriate host material capable of preventing QDs from degradation and developing a process of uniform incorporation of QDs in the matrix have become essential scientific and technological challenges. In this work, we developed a method of uniform incorporation of Cu-Zn-In-S (CZIS) QDs into a highly protective cross-linked polyisobutylene (PIB) matrix with high chemical resistance and low gas permeability. Our approach involves the synthesis of a methacrylate-terminated three-arm star-shaped PIB oligomeric precursor capable of quick formation of a robust 3D polymer network upon exposure to UV-light, as well as the design of a special ligand introducing short PIB chains onto the surface of the QDs, thus providing compatibility with the matrix. The obtained cross-linked QDs-in-polymer composites underwent a complex photostability test in air and under vacuum as well as a chemical stability test. These tests found that CZIS QDs in a cross-linked PIB matrix demonstrated excellent photo- and chemical stability when compared to identical QDs in widely used polyacrylate-based matrices. These results make the composites developed excellent materials for the fabrication of robust, stable and durable transparent light conversion layers.
URI: https://elib.bsu.by/handle/123456789/289138
DOI: 10.1039/d0na01012j
Scopus: 85102248039
Sponsorship: This work was supported by the EU Horizon 2020 Project MiLEDi (779373) and by the Belarusian Republican Foundation for Fundamental Research (grant X21MC-007). We are grateful to S. Goldberg (TU Dresden) for TEM imaging. D. I. Shiman, E. Ksendzov, E. A. Bolotina, and S. V. Kostjuk acknowledge the support by the Erasmus+ Traineeship Programme for Higher Education.
Licence: info:eu-repo/semantics/openAccess
Appears in Collections:Статьи сотрудников НИИ ФХП

Files in This Item:
File Description SizeFormat 
d0na01012j.pdf1,23 MBAdobe PDFView/Open
Show full item record Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.