Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/288722
Заглавие документа: О многообразиях представлений некоторых свободных произведений циклических групп с одним соотношением
Авторы: Беняш-Кривец, Валерий Вацлавович
Адмиралова, Александра Николаевна
Тема: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Механика
ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика
Дата публикации: 2020
Издатель: State Lev Tolstoy Pedagogical University
Библиографическое описание источника: Chebyshevskii Sb 2020;21(1):62-81.
Аннотация: In the paper representation varieties of two classes of finitely generated groups are investigated. The first class consists of groups with the presentation G = 〈a1, . . ., as, b1, . . ., bk, x1, . . ., xg | am11 = . . . = amsS = x21 . . . x2gW(a1, . . ., as, b1, . . ., bk) = 1〉, where g > 3, mi > 2 for i = 1, . . ., s and W(a1, . . ., as, b1, . . ., bk) is an element in normal form in the free product of cyclic groups H = 〈a1 | am11 〉 * . . . * 〈as | amsS 〉 * 〈b1〉 * . . . * 〈bk〉. The second class consists of groups with the presentation G(p, q) = 〈a1, . . ., as, b1, . . ., bk, x1, . . ., xg, t | am11 = . . . = amsS = 1, tUpt−1 = Uq〉, where p and q are integer numbers such that p > |q| ≥ 1, (p, q) = 1, mi > 2 for i = 1, . . ., s, g > 3, U = x21 . . . x2gW(a1, . . ., as, b1, . . ., bk) and W(a1, . . ., as, b1, . . ., bk) is an above defined element. Irreducible components of representation varieties Rn(G) and Rn(G(p, q)) are found, their dimensions are calculated and it is proved, that every irreducible component is a rational variety.
URI документа: https://elib.bsu.by/handle/123456789/288722
DOI документа: 10.22405/2226-8383-2020-21-1-62-81
Scopus идентификатор документа: 85086648193
Лицензия: info:eu-repo/semantics/openAccess
Располагается в коллекциях:Кафедра высшей алгебры и защиты информации (статьи)

Полный текст документа:
Файл Описание РазмерФормат 
781-1707-1-SM.pdf732,74 kBAdobe PDFОткрыть
Показать полное описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.