Please use this identifier to cite or link to this item:
https://elib.bsu.by/handle/123456789/288521
Title: | A YOLOv7 based visual detection of waste |
Authors: | Zhuda Yang |
Keywords: | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика |
Issue Date: | 2022 |
Publisher: | Минск : БГУ |
Citation: | Информационные системы и технологии = Information Systems and Technologies : материалы междунар. науч. конгресса по информатике. В 3 ч. Ч. 2, Респ. Беларусь, Минск, 27–28 окт. 2022 г. / Белорус. гос. ун-т ; редкол.: С. В. Абламейко (гл. ред.) [и др.]. – Минск : БГУ, 2022. – С. 80-85. |
Abstract: | With the popularization of environmental awareness, how to correctly and efficiently classify the increasing domestic waste is attracting attention. In this study, the recently released YOLOv7 was used to detect and realize the classification of waste. Use the YOLOv7 model to train the waste data set collected in reality. As the experimental result, the experiment proves that the YOLOv7 model is better than other object detection models |
URI: | https://elib.bsu.by/handle/123456789/288521 |
ISBN: | 978-985-881-425-0 (ч. 2); ISBN 978-985-881-427-4 |
Licence: | info:eu-repo/semantics/openAccess |
Appears in Collections: | 2022. Информационные системы и технологии |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.