Logo BSU

Please use this identifier to cite or link to this item: https://elib.bsu.by/handle/123456789/288289
Title: RANDOM WALKS ON CAYLEY GRAPHS OF COMPLEX REFLECTION GROUPS
Authors: Vaskouski, M.M.
Keywords: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика
ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика
Issue Date: 2021
Publisher: The Belarusian State University
Citation: Z Beloruss Gos Univ , Mat Inform 2021;2021(3):51-56.
Abstract: Asymptotic properties of random walks on minimal Cayley graphs of complex reflection groups are investigated. The main result of the paper is theorem on fast mixing for random walks on Cayley graphs of complex reflection groups. Particularly, bounds of diameters and isoperimetric constants, a known result on fast fixing property for expander graphs play a crucial role to obtain the main result. A constructive way to prove a special case of Babai’s conjecture on logarithmic order of diameters for complex reflection groups is proposed. Basing on estimates of diameters and Cheeger inequality, there is obtained a non-trivial lower bound for spectral gaps of minimal Cayley graphs on complex reflection groups.
URI: https://elib.bsu.by/handle/123456789/288289
DOI: 10.33581/2520-6508-2021-3-51-56
Scopus: 85125076668
Licence: info:eu-repo/semantics/openAccess
Appears in Collections:Статьи факультета прикладной математики и информатики

Files in This Item:
File Description SizeFormat 
4164-Текст статьи-38708-1-10-20211220.pdf934,61 kBAdobe PDFView/Open
Show full item record Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.