Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ:
https://elib.bsu.by/handle/123456789/286523
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Калинин, А. И. | - |
dc.contributor.author | Лавринович, Л. И. | - |
dc.contributor.author | Прудникова, Д. Ю. | - |
dc.date.accessioned | 2022-09-22T08:52:25Z | - |
dc.date.available | 2022-09-22T08:52:25Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Журнал Белорусского государственного университета. Математика. Информатика = Journal of the Belarusian State University. Mathematics and Informatics. – 2022. – № 2. – С. 23-33 | ru |
dc.identifier.issn | 2520-6508 | - |
dc.identifier.uri | https://elib.bsu.by/handle/123456789/286523 | - |
dc.description.abstract | Рассматривается задача оптимизации переходного процесса в квазилинейной динамической системе (содержит малый параметр при нелинейностях) с критерием качества, представляющим собой линейную комбинацию энергетических затрат и длительности процесса. Предлагается алгоритм построения асимптотических приближений заданного порядка к решению этой задачи. Суть данного алгоритма заключается в асимптотическом разложении по целым степеням малого параметра начальных значений сопряженных переменных и длительности процесса – конечномерных элементов, по которым легко восстанавливается решение задачи. Вычислительная процедура алгоритма сводится к решению задачи оптимизации переходного процесса в линейной динамической системе, интегрированию систем линейных дифференциальных уравнений, а также нахождению корней невырожденных линейных алгебраических систем. Также показывается, как можно использовать полученные асимптотические приближения для построения оптимального управления в рассматриваемой задаче при заданном значении малого параметра. | ru |
dc.language.iso | ru | ru |
dc.publisher | Минск : БГУ | ru |
dc.rights | info:eu-repo/semantics/openAccess | ru |
dc.subject | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика | ru |
dc.title | Метод малого параметра в задаче оптимизации квазилинейной динамической системы | ru |
dc.title.alternative | The small parameter method in the optimisation of a quasi-linear dynamical system problem / A. I. Kalinin, L. I. Lavrinovich, D. Y. Prudnikova | ru |
dc.type | article | ru |
dc.rights.license | CC BY 4.0 | ru |
dc.identifier.DOI | 10.33581/2520-6508-2022-2-23-33 | - |
dc.description.alternative | We consider an optimisation problem for the transient process in a quasi-linear dynamical system (contains a small parameter at non-linearities) with a performance index that is a linear combination of energy costs and the duration of the process. An algorithm for constructing asymptotic approximations of a given order to the solution of this problem is proposed. The algorithm is based on the asymptotic decomposition by integer powers of a small parameter of the initial values of adjoint variables and the duration of the process that are finite-dimensional elements, according to which the solution of the problem is easily restored. The computational procedure of the algorithm includes solving the problem of optimising the transient process in a linear dynamical system, integrating systems of linear differential equations, and finding the roots of non-degenerate linear algebraic systems. We also show how the constructed asymptotic approximations can be used to construct optimal control in the problem under consideration for a given value of a small par ameter. | ru |
Располагается в коллекциях: | 2022, №2 |
Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.