Logo BSU

Please use this identifier to cite or link to this item: https://elib.bsu.by/handle/123456789/282291
Title: The smoothness criterion for the classical solution to inhomogeneous model telegraph equation with the rate a(x,t) on the half-line
Other Titles: Критерий гладкости классического решения неоднородного модельного телеграфного уравнения со скоростью a(x,t) на полупрямой / Ф. Е. Ломовцев
Authors: Lomovtsev, F. E.
Keywords: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика
Issue Date: 2022
Publisher: Минск : ИВЦ Минфина
Citation: Труды 10-го международного научного семинара АМАДЕ-2021, 13–17 сентября 2021 г., Минск, Беларусь, БГУ. – Минск : ИВЦ Минфина, 2022. – С. 43-53.
Abstract: The smoothness criterion is derived on the right-hand side f for an explicit solution F to u tt (x,t) − a 2 (x,t)u xx (x,t) − a −1 (x,t)a t (x,t)u t (x,t) − a(x,t)a x (x,t)u x (x,t) = f(x,t) (1) with the variable rate a(x,t) in the first quarter of the plane G ∞ =]0,+∞[×]0,+∞[. The smoothness criterion consists of the necessary and sufficient smoothness requirements for the right-hand side f to this model telegraph equation. The necessary smoothness requirements on f are found as derivatives of F along two families of implicit characteristics of the given equation. Hence, by differentiation, we derive their sufficiency for twice continuous differentiability of F. The function F satisfies equation (1) pointwise, since it satisfies its canonical form pointwise. When f depends only on x or on t, then this smoothness criterion is equivalent to continuity f respectively, with respect to x or to t. For the equation, a general integral is constructed under a smoothness criterion of its right-hand side f
Abstract (in another language): Выведен критерий гладкости на правую часть f для явного решения F уравнения u tt (x,t) − a 2 (x,t)u xx (x,t) − a −1 (x,t)a t (x,t)u t (x,t) − a(x,t)a x (x,t)u x (x,t) = f(x,t) (1) с переменной скоростью a(x,t) в первой четверти плоскости G ∞ =]0,+∞[×]0,+∞[. Критерий гладкости состоит из необходимых и достаточных требований гладкости на правую часть f этого модельного телеграфного уравнения. Необходимые требования гладкости на f найдены, как производные от F вдоль двух семейств неявных характеристик данного уравнения. Отсюда дифференцированием выводится их достаточность для дважды непрерывной дифференцируемости F. Функция F поточечно удовлетворяет уравнению (1), так как она поточечно удовлетворяет его каноническому виду. Когда f зависит только от x или t, тогда критерий гладкости равносилен непрерывности f соответственно по x или t. Для уравнения (1) построен общий интеграл с критерием гладкости его правой части f
URI: https://elib.bsu.by/handle/123456789/282291
ISBN: 978-985-880-238-7
Sponsorship: The work is supported by the Belarusian Republican Foundation for Basic Research (grant № F22KI-001 dated November 05, 2021)
Licence: info:eu-repo/semantics/openAccess
Appears in Collections:АМАДЕ 2021

Files in This Item:
File Description SizeFormat 
43-53.pdf1,39 MBAdobe PDFView/Open
Show full item record Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.