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THE SMOOTHNESS CRITERION FOR THE CLASSICAL
SOLUTION TO INHOMOGENEOUS MODEL TELEGRAPH
EQUATION WITH THE RATE a(x, t) ON THE HALF-LINE

F. E. Lomovtsev

e-mail: lomovcev@bsu.by

The smoothness criterion is derived on the right-hand side f for an explicit solution F to

utt(x, t)− a2(x, t)uxx(x, t)− a−1(x, t)at(x, t)ut(x, t)− a(x, t)ax(x, t)ux(x, t) = f(x, t) (1)

with the variable rate a(x, t) in the first quarter of the plane Ġ∞ =]0,+∞[×]0,+∞[. The
smoothness criterion consists of the necessary and sufficient smoothness requirements for the
right-hand side f to this model telegraph equation. The necessary smoothness requirements on f
are found as derivatives of F along two families of implicit characteristics of the given equation.
Hence, by differentiation, we derive their sufficiency for twice continuous differentiability of F.
The function F satisfies equation (1) pointwise, since it satisfies its canonical form pointwise.
When f depends only on x or on t, then this smoothness criterion is equivalent to continuity f
respectively, with respect to x or to t. For the equation, a general integral is constructed under
a smoothness criterion of its right-hand side f.

Keywords: implicit characteristics; smoothness criterion; general integral.

Mathematics Subject Classification (2020): Primary 35L10, 35B65.

КРИТЕРИЙ ГЛАДКОСТИ КЛАССИЧЕСКОГО РЕШЕНИЯ
НЕОДНОРОДНОГО МОДЕЛЬНОГО ТЕЛЕГРАФНОГО

УРАВНЕНИЯ СО СКОРОСТЬЮ a(x, t) НА ПОЛУПРЯМОЙ

Ф. Е. Ломовцев

e-mail: lomovcev@bsu.by

Выведен критерий гладкости на правую часть f для явного решения F уравнения

utt(x, t)− a2(x, t)uxx(x, t)− a−1(x, t)at(x, t)ut(x, t)− a(x, t)ax(x, t)ux(x, t) = f(x, t) (1)

с переменной скоростью a(x, t) в первой четверти плоскости Ġ∞ =]0,+∞[×]0,+∞[. Кри-
терий гладкости состоит из необходимых и достаточных требований гладкости на правую
часть f этого модельного телеграфного уравнения. Необходимые требования гладкости на
f найдены, как производные от F вдоль двух семейств неявных характеристик данного
уравнения. Отсюда дифференцированием выводится их достаточность для дважды непре-
рывной дифференцируемости F. Функция F поточечно удовлетворяет уравнению (1), так
как она поточечно удовлетворяет его каноническому виду. Когда f зависит только от x
или t, тогда критерий гладкости равносилен непрерывности f соответственно по x или t.
Для уравнения (1) построен общий интеграл с критерием гладкости его правой части f.

Ключевые слова: неявные характеристики; критерий гладкости; общий интеграл.

Introduction

In this paper, we derive a smoothness criterion (necessary and sufficient conditions) on the right-
hand side to an inhomogeneous model telegraph equation with variable rate a(x, t) in the first quarter
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of the plane for its explicit classical solution. Derivatives along two families of implicit characteristics
of this equation from the investigated function of the form of a double integral over the characteristic
triangle represent the necessary integral smoothness requirements on the continuous right-hand
side of the equation. The sufficiency of all established necessary smoothness requirements for twice
continuous differentiability of the function under study follows from the properties of solutions
of a linear system of two equations with respect to its first partial derivatives with continuously
differentiable right-hand sides. The sufficiency of all established necessary smoothness requirements
on the right-hand side for the pointwise validity of the equation is obtained by substituting this
function under study into the canonical form of an inhomogeneous model telegraph equation due
to the non-degeneracy of the variables change. With the help of the obtained classical solution
to the model telegraph equation with variable rate, its general integral in the first quarter of the
plane is constructed. All proofs are essentially based on the inversion identities of implicit function
characteristics of an equation and their implicit inverse functions from the article [1]. In this article,
the classical solution was used to solve explicitly the first mixed problem to the model telegraph
equation in the first quarter of the plane without continuing the original data. In it, the model
telegraph equation is borrowed from Ph.D. thesis [2], where the first mixed problem was solved by
the continuation method of the input data. In Ph.D. thesis [2], due to the special properties of the
coefficients of the model telegraph equation on the half-strip of the plane, the first mixed problem
is reduced to the upper half-plane by periodic continuations of the coefficients and the input data
to the Cauchy problem and the d’Alembert formula on the set G+, which are absent in [1].

1. Model telegraph equation with rate a(x, t)

In the first quarter of the plane Ġ∞ =]0,+∞[×]0,+∞[ it is searched for a classical solution
F = F (x, t) with minimal smoothness of the right-hand side f = f(x, t) of the equation

utt(x, t)− a2(x, t)uxx(x, t)− a−1(x, t)at(x, t)ut(x, t)− a(x, t)ax(x, t)ux(x, t) = f(x, t) (1.1)

where f is a given real function of variables x and t, coefficient a(x, t) ≥ a0 > 0, (x, t) ∈ G∞ =
= [0,+∞[×[0,+∞[, and a ∈ C2(G∞). We denote by the number of subscripts of functions the
corresponding orders of their partial derivatives. Here Ck(Ω) is the set of k times continuously
differentiable functions on the subset Ω⊂R2, R =]−∞,+∞[, and C0(Ω) = C(Ω).

It is well known that to the equation (1.1) corresponds the two characteristic equations

dx = (−1)ia(x, t)dt, i = 1, 2, (1.2)

which have common integrals gi(x, t) = Ci, Ci ∈R, i = 1, 2. If the coefficient a is strictly positive,
i.e. a(x, t) ≥ a0 > 0, (x, t) ∈ G∞), then the variable t on the characteristics g1(x, t) = C1, C1 ∈ R,
strictly decreases and on the characteristics g2(x, t) = C2, C2 ∈ R, it strictly increases with the
growth of x. Therefore, implicit characteristic functions

yi = gi(x, t) = Ci, x≥ 0, t≥ 0, i = 1, 2, (1.3)

have strictly monotonic inverse functions x = hi{yi, t}, t ≥ 0, t = h(i)[x, yi], x ≥ 0, i = 1, 2. By the
definition of inverse mappings, the following inversion identities from [1] are true:

gi(hi{yi, t}, t) = yi, ∀ yi, hi{gi(x, t), t} = x, x≥ 0, i = 1, 2, (1.4)

gi(x, h
(i)[x, yi]) = yi, ∀ yi, h(i)[x, gi(x, t)] = t, t≥ 0, i = 1, 2, (1.5)

hi{yi, h(i)[x, yi]} = x, x≥ 0, dh(i)[hi{yi, t}, yi] = t, t≥ 0, i = 1, 2. (1.6)

On the right-hand sides of identities (1.4)–(1.6), mutually inverse functions and variables that
repeat twice on the left-hand sides are excluded, even if only one of the possible value of these
variables repeats twice on the left-hand sides of these identities. If the coefficient satisfies the
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inequality a(x, t) ≥ a0 > 0, (x, t) ∈ G∞), a ∈ C2(G∞), then the functions gi, hi, h(i) belong to
C2 with respect to x, t, yi, i = 1, 2 [1].

In case a(x, t) = a = const>0 they have the forms g1(x, t) = x+at, g2(x, t) = x−at, h1{y1, t} =
= y1 − at, h2{y2, t} = y2 + at, h(1)[x, y1] = (y1 − x)/a, h(2)[x, y2] = (x− y2)/a in the article [3].

D e f i n i t i o n 1.1. The function u = u(x, t) is called a classical solution to an equation (1.1) on
the set G∞, if u ∈ C2(G∞) and satisfies this equation at each point (x, t) ∈ Ġ∞.

First, if there exists at least one classical solution u ∈ C2(G∞) to the inhomogeneous equation
(1.1) in G∞, then its right-hand side must obviously be continuous f ∈ C(G∞). Second, according
to Definition 1.1, a particular solution F must be twice continuously differentiable F ∈C2(G∞) and
satisfies equation (1.1) pointwise on the set Ġ∞.

Let us find a particular classical solution to the inhomogeneous equation (1.1) in Ġ∞, a smoothness
criterion (necessary and sufficient requirements) on f in G∞ and its general integral in G∞.

The characteristic g2(x, t) = g2(0, 0) divides the first quarter of the plane G∞ into sets [1]:

G− = {(x, t) ∈G∞ : g2(x, t)> g2(0, 0)}, G+ = {(x, t) ∈G∞ : g2(x, t) ≤ g2(0, 0)}.

Just for the sake of simplicity, let the functions ă, f̆ be the even extensions respectively of the
functions a, f in x from G∞ to all x < 0. As a result, we will not need these extensions due to the
modulus of |x| in these functions a, f .

R e ma r k 1.1. An explicit formula for the classical solution of the first mixed problem for the
model telegraph equation (1.1) in the first quarter of the plane Ġ∞ was derived in [1].

2. Smoothness criterion for a particular classical solution to an
inhomogeneous model telegraph equation

Let us indicate the classical solution to equation (1.1) and its smoothness criterion on f in G∞.

T h e o r em 2.1. [4] Let the coefficient of (1.1) is strictly positive, i.e. a(x, t)≥a0>0, (x, t)∈G∞),
a ∈ C2(G∞). The function

F (x, t) =
1

2

t∫
0

h1{g1(x,t),τ}∫
h2{g2(x,t),τ}

f(|s|, τ)
a(|s|, τ)

ds dτ (2.1)

is a classical solution to an inhomogeneous equation (1.1) in G∞ if and only if its right-hand side is
continuous f ∈ C(G∞), and

Hi(x, t)≡
t∫

0

f(|hi{gi(x, t), τ}|, τ)
a(|hi{gi(x, t), τ}|, τ)

∂hi{gi(x, t), τ}
∂gi

dτ ∈ C1(G∞), i = 1, 2. (2.2)

P r o o f. Necessity. If the function f is a classical solution to equation (1.1) on the set G∞, then
equation (1.1) implies the continuity of f on the set G∞, i.e. f ∈ C(G∞).

In equation (1.1) on G∞ we make a non-degenerate change of independent variables [5]

ξ = g1(x, t), η = g2(x, t), (2.3)

where gi(x, t) are described in (1.3). Its Jacobian J(x, t) = ξxηt − ξtηx ̸= 0 non-degenerate in G∞,
because a(x, t)≥ a0 > 0 in G∞.

Now, in order to identify additional necessary smoothness requirements (2.2) on the right-hand
side of f to the continuity of f ∈ C(G∞), we calculate the derivative of F from (2.1) along the
characteristics gi(x, t) = Ci from (1.3), i.e. along the vectors σ⃗i = {(gi)t, −(gi)x}, i = 1, 2. Gradients
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→
grad gi(x, t) = {(gi)x, (gi)t}, i = 1, 2, are orthogonal to them, since

(
→
grad gi(x, t), σ⃗i

)
=

(gi)x(gi)t − (gi)t(gi)x = 0, (x, t) ∈ G∞, and are directed along the normals to these characteristics.
By virtue of the second inversion identities (1.4), the first partial derivatives of the function F are

Ft =
1

2

t∫
0

[
f(|h1{g1(x, t), τ}|, τ)
a(|h1{g1(x, t), τ}|, τ)

∂h1{g1(x, t), τ}
∂t

− f(|h2{g2(x, t), τ}|, τ)
a(|h2{g2(x, t), τ}|, τ)

∂h2{g2(x, t), τ}
∂t

]
dτ,

Fx =
1

2

t∫
0

[
f(|h1{g1(x, t), τ}|, τ)
a(|h1{g1(x, t), τ}|, τ)

∂h1{g1(x, t), τ}
∂x

− f(|h2{g2(x, t), τ}|, τ)
a(|h2{g2(x, t), τ}|, τ)

∂h2{g2(x, t), τ}
∂x

]
dτ.

The derivatives along the characteristics (1.3) of the twicely continuously differentiable function
F ∈ C2(G∞) are the continuously differentiable functions:

(g1)tFx − (g1)xFt =

=
1

2

t∫
0

f(|h2{g2(x, t), τ}|, τ)
a(|h2{g2(x, t), τ}|, τ)

[
(g1)x

∂h2{g2(x, t), τ}
∂t

− (g1)t
∂h2{g2(x, t), τ}

∂x

]
dτ =

=
1

2
J(x, t)

t∫
0

f(|h2{g2(x, t), τ}| , τ)
a(|h2{g2(x, t), τ}| , τ)

∂h2{g2(x, t), τ}
∂g2

dτ ∈ C1(G∞), (2.4)

(g2)tFx − (g2)xFt =

=
1

2

t∫
0

f(|h1{g1(x, t), τ}| , τ)
a(|h1{g1(x, t), τ}| , τ)

[
(g2)t

∂h1{g1(x, t), τ}
∂x

− (g2)x
∂h1{g1(x, t), τ}

∂t

]
dτ =

=
1

2
J(x, t)

t∫
0

f(|h1{g1(x, t), τ}| , τ)
a(|h1{g1(x, t), τ}| , τ)

∂h1{g1(x, t), τ}
∂g1

dτ ∈ C1(G∞), (2.5)

since for partial derivatives of functions hi = hi{gi(x, t), τ} the folowing relations

(gi)x
∂hi{gi(x, t), τ}

∂t
− (gi)t

∂hi{gi(x, t), τ}
∂x

=

= (gi)x
∂hi{gi(x, t), τ}

∂gi
(gi)t − (gi)t

∂hi{gi(x, t), τ}
∂gi

(gi)x ≡ 0, i = 1, 2,

(g1)x
∂h2{g2(x, t), τ}

∂t
− (g1)t

∂h2{g2(x, t), τ}
∂x

=

= [(g1)x(g2)t − (g1)t(g2)x ]
∂h2{g2(x, t), τ}

∂g2
= J(x, t)

∂h2{g2(x, t), τ}
∂g2

,

(g2)t
∂h1{g1(x, t), τ}

∂x
− (g2)x

∂h1{g1(x, t), τ}
∂t

=

= [(g1)x(g2)t − (g1)t(g2)x ]
∂h1{g1(x, t), τ}

∂g1
= J(x, t)

∂h1{g1(x, t), τ}
∂g1

are true. This implies the validity of the inclusions (2.2), since the Jacobian J(x, t) ̸= 0 in G∞ and
J ∈ C1(G∞). The necessity of the continuity f ∈ C(G∞) and the smoothness requirements (2.2) is
proved.

Sufficiency of continuity f ∈ C(G∞) and integral smoothness requirements (2.2) for twicely
continuous differentiability of F ∈ C2(G∞) follows from the continuous differentiability in G∞ of
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the first partial derivatives Ft and Fx of the function F. Since they are solutions of the linear
equation system (2.4), (2.5) with continuously differentiable right-hand sides of this system due to
the smoothness of (2.2) and the Jacobian J ∈ C1(G∞).

It remains to verify that function (2.1) satisfies equation (1.1) pointwise on G∞. By virtue of the
established twicely continuous differentiability of the function F ∈ C2(G∞), the latter is equivalent
to the fact that after the change (2.3) the function F satisfies the corresponding canonical form of
the equation (1.1) (see equation (2.13) below).

Equation (1.1) is reduced by non-degenerate change (2.3) to the form

[(ξt)
2 − a2(ξx)

2]ũξξ + 2aJ(x, t)ũξη + [(ηt)
2 − a2(ηx)

2]ũηη+

+[ξtt − a2ξxx − a−1atξt − aaxξx]ũξ + [ηtt − a2ηxx − a−1atηt − aaxηx]ũη =

=
˜̆
f(ξ, η) = f(x(ξ, η), t(ξ, η)) (2.6)

with respect to the function ũ(ξ, η) = u(x(ξ, η), t(ξ, η))∈C2(G̃∞). Here the set G̃∞ is the image of
the first quarter of the plane G∞ under changing (2.3).

The total differentials of the functions gi, i = 1, 2, of characteristics (1.3) are obviously identically
equal to zero and, according to the characteristic equations (1.2), we have the representations

dgi = (gi)xdx+ (gi)tdt = [(gi)t + (−1)ia(x, t)(gi)x]dt≡ 0, (x, t) ∈G∞, i = 1, 2,

and, therefore, in view of (2.3) we have the relations

(gi)t ≡ (−1)i+1a(x, t)(gi)x, (x, t) ∈G∞, i = 1, 2, (2.7)

ξt − a(x, t)ξx = 0, ηt + a(x, t)ηx = 0, (x, t) ∈G∞. (2.8)

We differentiate once the equations (2.8) with respect to t

ξtt − at(x, t)ξx − a(x, t)ξxt = 0, ηtt + at(x, t)ηx + a(x, t)ηxt = 0 (2.9)

and then differentiate the from (2.8) once with respect to x

ξtx − ax(x, t)ξx − a(x, t)ξxx = 0, ηtx + ax(x, t)ηx + a(x, t)ηxx = 0. (2.10)

We sum and subtract the equations (2.9), respectively, with the equations (2.10) multiplied by the
coefficient a(x, t), and arrive at the equations

ξtt − at(x, t)ξx − a(x, t)ax(x, t)ξx − a2(x, t)ξxx = 0,

ηtt − at(x, t)ηx − a(x, t)ax(x, t)ηx − a2(x, t)ηxx = 0. (2.11)

By virtue of equalities (2.8) we derive from equations (2.11), respectively, for (x, t) ∈G∞

ξtt − a2(x, t)ξxx = at(x, t)ξx + a(x, t)ax(x, t)ξx = a−1(x, t)at(x, t)ξt + a(x, t)ax(x, t)ξx,

ηtt − a2(x, t)ηxx = at(x, t)ηx + a(x, t)ax(x, t)ηx = a−1(x, t)at(x, t)ηt + a(x, t)ax(x, t)ηx. (2.12)

Based on the identities (2.12), the equation (2.6) becomes the equation

ũξη(ξ, η) = f̃(ξ, η)/[2ã(ξ, η)J(x, t)], (ξ, µ) ∈ G̃∞, (2.13)

where the coefficient ã(ξ, η) = ˜̆a(x(ξ, η), t(ξ, η)) and the replacement Jacobian J(x, t) = ξxηt−ξtηx ̸=
= 0 on the set G̃∞ = {(ξ, η) : h2{η, 0} ≤ h1{ξ, 0}, η ≥ 0;h(2)[η, 0]< h(1)[ξ, 0], η < 0; ξ ≥ 0}.

For any point M(x, t) ∈ G∞, the double iterated integral (2.1) is equal to the double integral
over the curvilinear characteristic triangle ∆MPQ with vertex M(x, t)∈G∞ and the vertices of its
base P (h2{g2(x, t), 0}, 0) , Q (h1{g1(x, t), 0}, 0) (Fig. 1, a; Fig. 2, a):

F (x, t) =
1

2

∫
∆MPQ

f(|x|, t)
a(|x|, t)

dxdt =
1

2

∫
∆MPQ

˜̆
f(x, t)
˜̆a(x, t)

dxdt, (2.14)



48 10-й Международный семинар АМАДЕ, Минск, Беларусь, 13–17 сентября 2021 г.

Fig. 1:
The region of integration оn the set G+: а — for the function F ; b — for the function F̃

Fig. 2:
The region of integration оn the set G−а — for the function F ; b — for the function F̃

By passing to new variables of type (2.3) in function (2.14):

ν = g1(s, τ), ρ = g2(s, τ), (2.15)

in the plane Õνρ, we find the image ∆ M̃P̃ Q̃ of triangle ∆ MPQ. Two characteristics g2(s, τ) =
= g2(x, t) and g1(s, τ) = g1(x, t), which intersect axis Os at τ = 0, respectively, at the base points
P (h2{g2(x, t), 0}, 0) and Q (h1{g1(x, t), 0}, 0) .

The mapping (2.3) maps a point M(x, t) of the plane Osτ to a point M̃(ξ, η) of the plane Õνρ.
After replacement (2.15) of the characteristic equations gi(s, τ) = gi(x, t), i = 1, 2, of the sides
MP and MQ of the triangle ∆MPQ become respectively the equations ν = g1(s, τ) = g1(x, t) = ξ,
ρ = g2(s, τ) = g2(x, t) = η of the sides M̃P̃ and M̃Q̃ for the triangle ∆M̃P̃ Q̃ in the plane Õνρ.
Replace (2.15) with the coordinates of the base vertices P (h2{g2(x, t), 0}, 0), Q(h1{g1(x, t), 0}, 0)
and by virtue of the first inversion identities from (1.4) we find the coordinates

ν = g1 (h2{η, 0}, 0) , ρ = g2 (h2{η, 0}, 0) = η; ν = g1 (h1{ξ, 0}, 0) = ξ, ρ = g2 (h1{ξ, 0}, 0)

of the vertex P̃ (g1 (h2{η, 0}, 0) , η) , Q̃ (ξ, g2 (h1{ξ, 0}, 0)) of the triangle ∆M̃P̃ Q̃ in the plane Õνρ,
since g1(x, t) = ξ, g2(x, t) = η in (2.3) (Fig. 1, b; Fig. 2, b).

Putting τ = 0 in change (2.15), we arrive at the equations ν = g1(s, 0), ρ = g2(s, 0), of which,
due to the uniqueness of the solutions s = h1{ν, 0}, s = h2{ρ, 0} of the equation system (2.15)
with respect to (s, τ) and the second inversion identities from (1.4), we derive the equation ν =
= g1(h2{ρ, 0}, 0) of the curvilinear base P̃ Q̃ of the triangle ∆M̃P̃ Q̃ in Õνρ (Fig. 1, b; Fig. 2, b).
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Due to the mutually inverse orientation of the lateral sides of the triangles ∆MPQ and ∆M̃P̃ Q̃,
the double integral (2.14) becomes an iterated integral as a result of the substitution (2.3)

F̃ (ξ, η) =
1

2

∫
∆ M̃P̃ Q̃

˜̆
f(ξ, η)
˜̆a(ξ, η)

J(ξ, η)dξdη =
1

2

η∫
g2(h1{ξ,0},0)

ξ∫
g1(h2{ρ,0},0)

˜̆
f(ν, ρ)
˜̆a(ν, ρ)

J(ν, ρ)dνdρ, (2.16)

where the points Õ(0, 0), M̃(ξ, η), P̃ (g1 (h2{η, 0}, 0) , η) , Q̃ (ξ, g2 (h1{ξ, 0}, 0)) on the plane Õνρ
are respectively the images of the points O(0, 0), M(x, t), P (h2{g2(x, t), 0}, 0) , Q (h1{g1(x, t), 0}, 0)
from the plane Osτ after variable transformation (2.15). For the existence of the integral (2.16), it is
important that if the function f ∈C(G∞) is continuous, then, due to the continuity of the Jacobian
J(ν, ρ) ̸= 0 of the transformation (2.15), the function ˜̆

f ∈ C(G̃∞) in (2.16) is also continuous.
We take partial derivatives with respect to η and ξ of F̃ from (2.16) and have a mixed derivative

∂2F̃ (ξ, η)

∂ξ∂η
=

1

2

˜̆
f(ξ, η)
˜̆a(ξ, η)

J(ξ, η) =
1

2

f̃(ξ, η)

ã(ξ, η)J(x, t)
, (ξ, η) ∈ G̃∞, (2.17)

since the inverse Jacobian [J(ξ, η)]−1 = xξtη − xηtξ = 1/J(x, t) ̸= 0 on G̃∞. Thus, the function F
after the change (2.3) satisfies equation (2.13) on G̃∞. Theorem 2.1 is proved.

C o r o l l a r y 2.1. [4] Let the coefficient is strictly positive a(x, t)≥a0>0, (x, t)∈G∞), a∈C2(G∞).
If the right-hand side f of the equation (1.1) does not depend on x or on t in G∞, then the continuity
of f in t or in x, respectively, is necessary and is sufficient for the function F from (2.1) to be a
classical solution of the inhomogeneous equation (1.1) in G∞.

P r o o f. The necessity of the continuity of f ∈ C[0,+∞[ in t or in x is strictly justified in the
proof of Theorem 2.1. In fact, it remains to show the sufficiency of this continuity of f ∈ C[0,+∞[
in t or in x by the fact that in this case the corresponding integral smoothness requirements (2.2)
are automatically satisfied.

If the right-hand side f = f(t) does not depend on x, then function F from (2.1) takes the form

F (x, t) =
1

2

t∫
0

h1{g1(x,t),τ}∫
h2{g2(x,t),τ}

f(τ)

a(|s|, τ)
ds dτ. (2.18)

According to the proof of Theorem 2.1, the inclusion F∈C2(G∞) is sufficient for the function (2.18)
to be a solution of the equation (1.1) in G∞. Using the second inversion identities from (1.4), in G∞
for all f(t) ∈ C[0,+∞[ its first partial derivatives are obviously continuously differentiable

Ft =
1

2

t∫
0

[
f(τ)

a(|h1{g1(x, t), τ}|, τ)
∂h1{g1(x, t), τ}

∂t
− f(τ)

a(|h2{g2(x, t), τ}|, τ)
∂h2{g2(x, t), τ}

∂t

]
dτ,

Fx =
1

2

t∫
0

[
f(τ)

a(|h1{g1(x, t), τ}|, τ)
∂h1{g1(x, t), τ}

∂x
− f(τ)

a(|h2{g2(x, t), τ}|, τ)
∂h2{g2(x, t), τ}

∂x

]
dτ.

If the right side f = f(x) does not depend on t, then the function F from (2.1) takes the form

F (x, t) =
1

2

t∫
0

h1{g1(x,t),τ}∫
h2{g2(x,t),τ}

f̆(s)

ă(s, τ)
dsdτ, (2.19)

where the functions f̃ and ã are even extensions of the functions f and a from x≥0 to all x<0. Same
as at the beginning of the proof of the corollary 2.1, from Theorem 2.1 we have that if a function
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F ∈C2(G∞), then it satisfies equation (1.1) in G∞. Let us check its twice continuous differentiability
for f(x) ∈ C[0,+∞[. The first partial derivative with respect to t of (2.19) is equal to the function

Ft =
1

2

t∫
0

[
f̆(h1{g1(x, t), τ})
ă(h1{g1(x, t), τ}, τ)

∂h1{g1(x, t), τ}
∂t

− f̆(h2{g2(x, t), τ})
ă(h2{g2(x, t), τ}, τ)

∂h2{g2(x, t), τ}
∂t

]
dτ,

to which we also applied the second inversion identities from (1.4). When we move here to the new
integration variables y = h1{g1(x, t), τ}, z = h2{g2(x, t), τ}, then on G∞ we obtain the obvious
continuously differentiable representation of this derivative

Ft(x, t) =
1

2

x∫
h1{g1(x,t), 0}

[
f̆(y)

ă(y, τ)

∂h1{g1(x, t), τ}
∂t

(
∂h1{g1(x, t), τ}

∂τ

)−1
]∣∣∣∣∣
τ=h(1)[y,g1(x,t)]

dy−

−1

2

x∫
h2{g2(x,t), 0}

[
f̆(y)

ă(y, τ)

∂h2{g2(x, t), τ}
∂t

(
∂h2{g2(x, t), τ}

∂τ

)−1
]∣∣∣∣∣
τ=h(2)[z,g2(x,t)]

dz ∈ C1(G∞),

where we have used the second inversion identities from (1.4) and the identities τ = h(1)[y, g1(x, t)],
τ = h(2)[z, g2(x, t)] due to the second inversion identities from (1.6).

For all f(x) ∈ C[0,+∞[ the first partial derivative with respect to x of (2.19) is the function

Fx =
1

2

t∫
0

[
f̆(h1{g1(x, t), τ})
ă(h1{g1(x, t), τ}, τ)

∂h1{g1(x, t), τ}
∂x

− f̆(h2{g2(x, t), τ})
ă(h2{g2(x, t), τ}, τ)

∂h2{g2(x, t), τ}
∂x

]
dτ,

in which we used the second inversion identities from (1.4). After passing here to the new integration
variables y = h1{g1(x, t), τ}, z = h2{g2(x, t), τ} this partial derivative acquires the obvious for f(x)∈
∈ C[0,+∞[ continuously differentiable representation

Fx =
1

2

x∫
h1{g1(x,t), 0}

[
f̆(y)

ă(y, τ)

∂h1{g1(x, t), τ}
∂x

(
∂h1{g1(x, t), τ}

∂τ

)−1
]∣∣∣∣∣
τ=h(1)[y,g1(x,t)]

dy−

−1

2

x∫
h2{g2(x,t), 0}

[
f̆(y)

ă(y, τ)

∂h2{g2(x, t), τ}
∂x

(
∂h2{g2(x, t), τ}

∂τ

)−1
]∣∣∣∣∣
τ=h(2)[z,g2(x,t)]

dz ∈ C1(G∞),

where we have applied the same identities as for the partial derivative of F with respect to t.
Thus, the sufficiency of f ∈ C[0,+∞[ for F ∈ C2(G∞) is verified. Corollary 2.1 is proved.

C o r o l l a r y 2.2.[4] Let the coefficient be strictly positive, a(x, t) ≥ a0 > 0, (x, t) ∈ G∞, a ∈
∈ C2(G∞). If the function f depends on x and on t, then for f ∈ C(G∞) the requirements that the
integrals from (2.2) belong to the space C1(G∞) are equivalent to the requirements that they belong
to the space C (1,0)(G∞) or C (0,1)(G∞). Here C (1,0)(G∞), C (0,1)(G∞) are, respectively, the spaces
of continuously differentiable with respect to x and t and continuous with respect to t and x functions
on G∞.

P r o o f. The continuously differentiable right-hand sides f∈C1(G∞) obviously satisfy the integral
requirements from (2.2). By replacing si = hi{gi(x, t), τ} by the integration variable τ, for example,
the integrals from (2.2) are reduced to the integrals

Hi(x, t) =

t∫
0

f(|hi{gi(x, t), τ}|, τ)
a(|hi{gi(x, t), τ}|, τ)

∂hi{gi(x, t), τ}
∂gi

dτ =
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=

x∫
hi{gi(x,t),0}

[
f(|si|, τ)
a(|si|, τ)

∂hi{gi(x, t), τ}
∂gi

(
∂hi{gi(x, t), τ}

∂τ

)−1
]∣∣∣∣∣
τ=h(i)[si,gi(x,t)]

dsi, i = 1, 2, (2.20)

which for f ∈C1(G∞) are indeed continuously differentiable with respect to x and t in G∞, because
in the last integrals (2.20) under the modulus |si| the variables x and t are missing. Otherwise, the
module would give a discontinuity of derivatives. Here we have applied the second inversion identities
from (1.4) and the equalities τ = h(i)[si, gi(x, t)], i = 1, 2, due to the second identities from (1.6).

First, for smoother f ∈ C1(G∞), we take the derivative of the integrals (2.2)

∂Hi

∂t
=
f(|hi{gi(x, t), t}| , t)
a(|hi{gi(x, t), t}| , t)

∂hi{gi(x, t), t}
∂gi

+

t∫
0

[
f(|hi{gi(x, t), τ}|, τ)
a(|hi{gi(x, t), τ}|, τ)

∂hi{gi(x, t), τ}
∂gi

]′
t

dτ =

=
f(x, t)

a(x, t)

1

(gi)x
+ (−1)i+1a(x, t)

t∫
0

[
f(|hi{gi(x, t), τ}|, τ)
a(|hi{gi(x, t), τ}|, τ)

∂hi{gi(x, t), τ}
∂gi

]′
x

dτ =

=
f(x, t)

a(x, t)

1

(gi(x, t))x
+ (−1)i+1a(x, t)

∂Hi

∂x
, i = 1, 2, (2.21)

due to the second inversion identities from (1.4), to the well known formula for the derivative of the
inverse function, to the relations (2.7) and to the equalities

∂f(|hi{gi(x, t), τ}|, τ)
∂t

=
∂f(|hi{gi(x, t), τ}|, τ)

∂hi

∂hi{gi(x, t), τ}
∂gi

(gi)t =

= (−1)i+1a(x, t)
∂f(|hi{gi(x, t), τ}|, τ)

∂hi

∂hi{gi(x, t), τ}
∂gi

(gi)x = (−1)i+1a(x, t)
∂f(|hi{gi(x, t), τ}|, τ)

∂x
,

∂2hi{gi(x, t), τ}
∂t∂gi

=
∂2hi{gi(x, t), τ}

∂g2i
(gi(x, t))t =

= (−1)i+1a(x, t)
∂2hi{gi(x, t), τ}

∂g2i
(gi(x, t))x = (−1)i+1a(x, t)

∂2hi{gi(x, t), τ}
∂x∂gi

, i = 1, 2.

Then two equalities (2.21) of the first and last parts, which do not contain explicit derivatives
of function f with respect to x and t in G∞, are extended by passing to the limit in f smoother
f ∈ C1(G∞) into continuous functions f ∈ C(G∞), satisfying (2.2) in G∞ [6]. Two equalities (2.21)
obtained after passing to limit confirm the assertion of Corollary 2.2 on G∞. Corollary 2.2 is proved.

3. General integral of the model telegraph equation

When solving mixed (initial-boundary) problems for the model telegraph equation (1.1) on half-
strip plane by “method of auxiliary mixed problems for wave equations on the half-line” from [7], it
is important to know its general integral (the set of all twicely continuously differentiable solutions).

T h e o r em 3.1. [4] Let a(x, t)≥a0>0, (x, t)∈G∞), a∈C2(G∞) and (2.2) for f ∈C(G∞). Then
the general integral of equation (1.1) in G∞ in the set of classical solutions are the functions

u(x, t) = f̃1(g1(x, t)) + f̃2(g2(x, t)) + F (x, t), (x, t) ∈G∞, (3.1)

where f̃1 and f̃2 are any twicely continuously differentiable functions of the variables ξ, η having the
form

f̃1(ξ) = f1(ξ) + f2(g2(0, 0)), f̃2(η) = f2(η)− f2(g2(0, 0)). (3.2)

P r o o f. For the continuous right-hand side f ∈C(G∞), the integral smoothness requirements (2.2)
from Theorem 2.1 are obviously equivalent to the integral smoothness requirements (2.2) with the
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requirement that the first partial derivatives of the functions Hi(x, t), i = 1, 2, be continuous on the
sets G+, G− and in some neighborhood of characteristic g2(x, t) = g2(0, 0) (Fig. 1, a; Fig. 2, a). By
Theorem 2.1, for the right-hand side f ∈ C(G∞) and Hi(x, t) ∈ C1(G∞), i = 1, 2, the function F
of the form (2.1) is twicely continuously differentiable and satisfies the equation (1.1) pointwise on
Ġ∞ and the equation (2.13) on G̃∞ due to the identity (2.17) established above.

Therefore, formulas (3.1), (3.2) are indeed the set of all classical solutions to the model telegraph
equation (1.1) on G∞. The classical solutions (3.2) to the homogeneous equation (1.1) are obtained
by “the method of immersion in solutions with fixed values”, proposed in [8] in order to simplify the
calculation of explicit solutions to systems of differential equations. It is clear that, in equalities (3.2)
the functions f1, f2 and f̃1, f̃2, respectively, are twicely continuously differentiable at the same time.
The general integral (3.1) of all classical solutions to the inhomogeneous equation (1.1) is the sum
of an general integral u0(x, t) = f̃1(g1(x, t))+ f̃2(g2(x, t)) to an homogeneous equation (1.1) and the
particular classical solution F of the form (2.2) to the inhomogeneous equation (1.1). Theorem 3.1
is proved.

The smooth non-degenerate coefficient a simplifies requirements (2.2) on f ∈ C(G∞).

R em a r k 3.1. For the coefficient a(x, t)≥a0>0, (x, t)∈G∞), a∈C2(G∞) the integral smoothness
requirements (2.2) on the continuous f ∈ C(G∞) are equivalent to the requirements

t∫
0

f(|hi{gi(x, t), τ}|, τ) dτ ∈ C1(G∞), i = 1, 2.

4. Conclusion

The criterion for twice continuous differentiability of the solution F of the form (2.1) to the inhomo-
geneous model telegraph equation (1.1) with a variable rate a(x, t) in the first quarter of the plane
G∞ is found. It consists of the continuity requirement right-hand side f ∈ C(G∞) and two integral
smoothness requirements (2.2) on the set G∞. The general integral (the general solution) (3.1), (3.2)
from twicely continuously differentiable functions determines the explicit resolution of various mixed
(initial-boundary) problems for the inhomogeneous model telegraph equation (1.1) on the set G∞.

The work is supported by the Belarusian Republican Foundation for Basic Research (grant
№ F22KI-001 dated November 05, 2021).
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