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THE SMOOTHNESS CRITERION FOR THE CLASSICAL
SOLUTION TO INHOMOGENEOUS MODEL TELEGRAPH
EQUATION WITH THE RATE a(x,t) ON THE HALF-LINE

F. E. Lomovtsev

e-mail: lomovcev@bsu.by

The smoothness criterion is derived on the right-hand side f for an explicit solution F to
et (2, 1) — a® (2, ) gy (2, 1) — a2, t)as(z, )us(z,t) — a(x, t)ag(z, ug (2, 1) = f(2,t) (1)

with the variable rate a(z,t) in the first quarter of the plane Goo =]0,+00[x]0, +00[. The
smoothness criterion consists of the necessary and sufficient smoothness requirements for the
right-hand side f to this model telegraph equation. The necessary smoothness requirements on f
are found as derivatives of F' along two families of implicit characteristics of the given equation.
Hence, by differentiation, we derive their sufficiency for twice continuous differentiability of F.
The function F satisfies equation (1) pointwise, since it satisfies its canonical form pointwise.
When f depends only on z or on ¢, then this smoothness criterion is equivalent to continuity f
respectively, with respect to = or to t. For the equation, a general integral is constructed under
a smoothness criterion of its right-hand side f.
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KPUTEPUI I'VIAAKOCTHU KJIACCUYECKOI'O PEIIIEHI A
HEOJHOPOAJHOI'O MOAEJIBHOI'O TEJIETPA®HOI'O
YPABHEHUS CO CKOPOCTBIO a(z,t) HA IIOJIYIIPAMON
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BoiBejien KpuTepwii T1aJKOCTH Ha NPABYIO 9acTh f s IBHOTO pentenus F' ypaBHeHns
e (2, 1) — a® (2, ) gy (2, 1) — a2, t)ay(z, )us (z, 1) — a(x, t)ag(z, )ug (2, 1) = f(2,t) (1)

¢ IepeMeHHoil CKOpoCThIo a(z,t) B mepBoil derBepru mwiockoctu Goo =]0, +00[x]0, +oo[. Kpu-
Tepuil IVIaJKOCTH COCTOUT U3 HEOOXOIMMBIX U JIOCTATOYHBIX TPeOOBAHMI IVIAIKOCTH Ha IIPABYIO
49acTh f 9TOro MOJIeJILHOIO TesierpadHoro ypasuenns. Heobxomumbie TpebOBaHUS IVIAKOCTH HA
f Haiiienbl, KaK TPOU3BOJHBIE OT F' BIOJBb JIBYX CEMENCTB HESBHBIX XapAKTEPUCTUK JAHHOIO
ypasuenus. Orciojia uddepeHnupoBanneM BbIBOAUTCS X JOCTATOTHOCTD JIJIsT JIBaXK Il HElpe-
poiBHOI muddepeniupyemoctu F. Oyuknus F' noroyeuno yuosiersopsier ypasaenuio (1), Tak
KaK OHA MOTOYETHO YIOBJIETBODSET €ro KaHoHmIecKoMy Buay. Korma f 3aBucur TOJBKO OT T
uan t, TOrJa KpUTEpUit IIaJKOCTH PABHOCHJIEH HEIPEPBIBHOCTH f COOTBETCTBEHHO IO X HJIN .
Hnst ypasrerust (1) mocTpoer obumii HHTErpasl ¢ KpUTEPUEM [IAJKOCTH ero npaBoil qactu f.

KiroueBbie cioBa: HEAGHVIE TAPAKMEPUCTIUKY; KPUMEPUT 2aadKocmu; obwut unmezpan.

Introduction

In this paper, we derive a smoothness criterion (necessary and sufficient conditions) on the right-
hand side to an inhomogeneous model telegraph equation with variable rate a(z,t) in the first quarter
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of the plane for its explicit classical solution. Derivatives along two families of implicit characteristics
of this equation from the investigated function of the form of a double integral over the characteristic
triangle represent the necessary integral smoothness requirements on the continuous right-hand
side of the equation. The sufficiency of all established necessary smoothness requirements for twice
continuous differentiability of the function under study follows from the properties of solutions
of a linear system of two equations with respect to its first partial derivatives with continuously
differentiable right-hand sides. The sufficiency of all established necessary smoothness requirements
on the right-hand side for the pointwise validity of the equation is obtained by substituting this
function under study into the canonical form of an inhomogeneous model telegraph equation due
to the non-degeneracy of the variables change. With the help of the obtained classical solution
to the model telegraph equation with variable rate, its general integral in the first quarter of the
plane is constructed. All proofs are essentially based on the inversion identities of implicit function
characteristics of an equation and their implicit inverse functions from the article [1]. In this article,
the classical solution was used to solve explicitly the first mixed problem to the model telegraph
equation in the first quarter of the plane without continuing the original data. In it, the model
telegraph equation is borrowed from Ph.D. thesis [2], where the first mixed problem was solved by
the continuation method of the input data. In Ph.D. thesis [2], due to the special properties of the
coefficients of the model telegraph equation on the half-strip of the plane, the first mixed problem
is reduced to the upper half-plane by periodic continuations of the coefficients and the input data
to the Cauchy problem and the d’Alembert formula on the set G, which are absent in [1].

1. Model telegraph equation with rate a(x,1)

In the first quarter of the plane Go =]0, +00[x]0, +00[ it is searched for a classical solution
F = F(x,t) with minimal smoothness of the right-hand side f = f(x,t) of the equation

ug(x,t) — a2(:c,t)um(x,t) — a_l(x,t)at(z, u(x,t) — alx, t)ay(z, )uy(z,t) = f(z,t) (1.1)

where f is a given real function of variables z and ¢, coefficient a(z,t) > ag > 0, (z,t) € Goo =
= [0, +00[x[0, 40|, and a € C?*(G ). We denote by the number of subscripts of functions the
corresponding orders of their partial derivatives. Here C*() is the set of k times continuously
differentiable functions on the subset Q C R?, R =] — oo, +o0[, and C°(Q) = C(9).

It is well known that to the equation (1.1) corresponds the two characteristic equations

de = (=D'a(z, t)dt, i =1, 2, (1.2)

which have common integrals g;(z,t) = C;, C; € R, i = 1, 2. If the coefficient a is strictly positive,
ie. a(z,t) >ag >0, (r,t) € G), then the variable ¢ on the characteristics g1 (z,t) = C1, C1 € R,
strictly decreases and on the characteristics ga(z,t) = Co, Co € R, it strictly increases with the
growth of x. Therefore, implicit characteristic functions

yi = gi(x, t) =Cy, >0, t >0, i=1, 2 (1.3)

have strictly monotonic inverse functions z = h;{y;,t},t >0, t = h@ [z, 4], >0, i = 1, 2. By the
definition of inverse mappings, the following inversion identities from [1]| are true:

hi{yi, WOz, ]} = @, & >0, dh D [hi{y;, t},ys] =t t>0,i=1, 2. (1.6)

On the right-hand sides of identities (1.4)—(1.6), mutually inverse functions and variables that
repeat twice on the left-hand sides are excluded, even if only one of the possible value of these
variables repeats twice on the left-hand sides of these identities. If the coefficient satisfies the
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inequality a(z,t) > ag > 0, (z,t) € Goo), a € C%(Gs), then the functions g;, hi, h() belong to
C? with respect to x,t,y;, i =1, 2 [1].

In case a(z,t) = a = const >0 they have the forms g;(z,t) = x+at, g2(z,t) = x —at, hi{y1,t} =
=y — at, ha{ya,t} = yo + at, KWV [z, y1] = (y1 — ) /a, K[z, ya] = (x — y2)/a in the article [3].

Definition 1.1. The function u = u(x,t) is called a classical solution to an equation (1.1) on
the set Goo, if u € C2(Goo) and satisfies this equation at each point (z,t) € Goo

First, if there exists at least one classical solution u € C?(G ) to the inhomogeneous equation
(1.1) in G, then its right-hand side must obviously be continuous f € C(G). Second, according
to Definition 1.1, a particular solution F must be twice continuously differentiable F' € C?(Gy) and
satisfies equation (1.1) pointwise on the set Goo

Let us find a particular classical solution to the inhomogeneous equation (1.1) in G, a smoothness
criterion (necessary and sufficient requirements) on f in G4 and its general integral in G,

The characteristic go(x,t) = g2(0,0) divides the first quarter of the plane G, into sets [1]:

G- ={(z,t) G : g2(x,t) > 92(0,0)}, G4 ={(x,t) € Goo : ga(z,t) < g2(0,0)}.

Just for the sake of simplicity, let the functions a, f be the even extensions respectively of the
functions a, f in x from G to all x < 0. As a result, we will not need these extensions due to the
modulus of |z| in these functions a, f.

Remark 1.1. An explicit formula for the classical solution of the first mixed problem for the
model telegraph equation (1.1) in the first quarter of the plane G, was derived in [1].

2. Smoothness criterion for a particular classical solution to an
inhomogeneous model telegraph equation

Let us indicate the classical solution to equation (1.1) and its smoothness criterion on f in Goo

Theorem 2.1. [4] Let the coefficient of (1.1) is strictly positive, i.e. a(x,t)>ag>0, (x,t) € Gx),
a € C*(Gy). The function

. t  hi{gi(z,t),7} <‘ ‘ )
S|, T
— 7 7 2.1
; allslor) @7 21
0 hQ{gQ(mvt)»T}

is a classical solution to an inhomogeneous equation (1.1) in G if and only if its right-hand side is

continuous f € C(Gw), and

t

(|hi{gi(z, 1), T}, 7) Ohi{gi(x,t), 7} ) o
/ (|hi{gi(x,t), 7}, 7) dy; dre € (G), i=1, 2. (2.2)

0

Proof. Necessity. If the function f is a classical solution to equation (1.1) on the set G, then
equation (1.1) implies the continuity of f on the set G, i.6. f € C(Guo).
In equation (1.1) on G we make a non-degenerate change of independent variables |5]

gzgl(x7t)¢ nZQQ(:Evt)a (23)

where g¢;(x,t) are described in (1.3). Its Jacobian J(z,t) = {me — &me # 0 non-degenerate in G,
because a(z,t) > ag >0 in G

Now, in order to identify additional necessary smoothness requirements (2.2) on the right-hand
side of f to the continuity of f € C(G), we calculate the derivative of F' from (2.1) along the
characteristics g;(z,t) = C; from (1.3), i.e. along the vectors ¢; = {(gi);, —(9i),}, % =1, 2. Gradients
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— —
grad gi(xz,t) = {(9:),, (9i);}, ¢ = 1, 2, are orthogonal to them, since <gmd gi(z,t), 5}) =

(9i).(9i) — (9i)¢(9i), = 0, (z,t) € G, and are directed along the normals to these characteristics.
By virtue of the second inversion identities (1.4), the first partial derivatives of the function F' are

F = 1/t -f(|h1{gl($7t)77}|77) 8h1{gl($7t)77-} N f(|h2{92(x7t)77}|>7) ah2{92($7t)77-}- dr
©2) lalmda(e .l a(lha{gae.t). 7},7) ot ]
F :1j -f(|h1{g1(l',t),7'}|,7‘) ahl{gl(x7t)>7—} _ f(|h2{92(xat)>7—}|77_) 8h2{g2($,t),7’}- dr
’ 20 _a(|h1{gl(x7t)77}|¢7) oz a(|h2{92(x7t)77}|77) Ox i .

The derivatives along the characteristics (1.3) of the twicely continuously differentiable function
F € C?(G+) are the continuously differentiable functions:

(gl)tFx - (gl)th =

1 [ fUhedga(a ) THT) [, Oha{ga(ast). ) Oha{ga(, 1), 7}
/ ‘h2{g2 ’ T}| ) |:(gl) ot _(gl)t ox

0

f(’hQ{QQ(wvt)’T}‘aT) ahQ{QQ(Z',t),T} 1
a(lhef{g2(z,t), T}, T) dga dr € C'(Go), (2.4)

(QQ)tFx - (92)th =

1
= §J($7t)

o _

;/ (Ihi{g1(z,t), 7}, 7) [(92) Ohi{gi(z,t), 7} _(gz)xahl{gl(%t)ﬁ}
0

(Ihi{g1(z,t), 7}, 7) oz ot
/ f(hi{g1(z,t), T}, 7) Ohi{gi(x,t), T} L
0/ a(lhi{gi(z,t), T}, 7) g1 dr € C(Geo), (2.5)

since for partial derivatives of functions h; = h;{g;(x,t), 7} the folowing relations

(00, 22D T _ (g Ohitai(:D). 7)

= (gi)xahi{gig;t)’ T}(gi)t - (gi)tahi{giéz;t)’ i (91),=0, i=1, 2,

(gl)xah2{92(83;7t)7 T} _( l)tahQ{QQgZ) t)v T}

= [(91)4(92)¢ — (91)¢(92) ]8hz{gza(§2, t), 7}

8h1{gl('x7 t)v T} o
ox

8]12{92(%7 t)? T}

= J(z,t) 92

(92)x ahl{gl(axt7 t)a T} _

(92)t

= [(91),(92), — (91),(92), ]3hl{91,0§§1t> S T )ahl{gg;,w, -

are true. This implies the validity of the inclusions (2.2), since the Jacobian J(z,t) # 0 in G, and
J € CY(Goo). The necessity of the continuity f € C(Gs) and the smoothness requirements (2.2) is
proved.

Sufficiency of continuity f € C'(G) and integral smoothness requirements (2.2) for twicely
continuous differentiability of F' € C?(Gy) follows from the continuous differentiability in Guo of
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the first partial derivatives Fy and F, of the function F. Since they are solutions of the linear
equation system (2.4), (2.5) with continuously differentiable right-hand sides of this system due to
the smoothness of (2.2) and the Jacobian J € C'(Gy).

It remains to verify that function (2.1) satisfies equation (1.1) pointwise on G. By virtue of the
established twicely continuous differentiability of the function F € C?(G), the latter is equivalent
to the fact that after the change (2.3) the function F' satisfies the corresponding canonical form of
the equation (1.1) (see equation (2.13) below).

Equation (1.1) is reduced by non-degenerate change (2.3) to the form

(€)% — (&) ige + 2] (2, )Tigy + [(1)* — @* (1) ]y +
+[§tt - a2§:m: - ailatgt - aaxgw]aé + [ntt - a277x:c - ailatnt - aaw”x}ﬁn =

= (&m) = f(@(€,m), 1(E ) (2.6)

with respect to the function @(&,n) = u(x(£,7m), t(€,7)) € C*(Go). Here the set G is the image of
the first quarter of the plane G under changing (2.3).

The total differentials of the functions g;, i = 1, 2, of characteristics (1.3) are obviously identically
equal to zero and, according to the characteristic equations (1.2), we have the representations

dgi = (9:),dx + (9:),dt = [(g:), + (—1)'a(, t)(9:),)dt =0, (z,t) € Goo, i = 1, 2,
and, therefore, in view of (2.3) we have the relations
(90 = (=) a2, t)(g:) (2:8) € Gooy i = 1, 2, (2.7)
& —alz, ) =0, +alx,t)n, =0, (z,t) € Go. (2.8)
We differentiate once the equations (2.8) with respect to ¢
§it — ap(x, 1) — a(w, )€ = 0, My + ag(z,6)ne + a(w, )0 = 0 (2.9)

and then differentiate the from (2.8) once with respect to z

é‘tw - aa:(xv t)éa: - a(:c, t)gx:c = 07 Ntz + aa:(ma t)nx + CL($, t)nxx = 0. (210)

We sum and subtract the equations (2.9), respectively, with the equations (2.10) multiplied by the
coefficient a(x,t), and arrive at the equations

gtt - Cl,t(.f, t)gzv - a(:c, t)ax(x, t)ﬁ:l: - a2(x7 t)f;rz = 07

e — ag(x, )Ny — a(z, t)az(z, t)n, — aQ(J:, )Nz = 0. (2.11)

By virtue of equalities (2.8) we derive from equations (2.11), respectively, for (z,t) € G
gtt - QQ(SL" t)é-xx = (lt(.fU, t)fx + a(.’L’, t)ax(x, t)fl‘ = a_l(xu t)at(ﬂf, t)ét + CL(CC, t)ax(xu t)é:ﬂa

Mt — aQ(x, t)nm = at(x7 t)nm + a(ac, t)a:p(x7 t)nm = a_l(xa t)at(x7 t)Tlt + CL(:L‘, t)ax(x, t)ﬁx- (212)
Based on the identities (2.12), the equation (2.6) becomes the equation

agy(&,m) = f(&,m)/[2a(&, )T (,0)], (& 1) € Gcy (2.13)

where the coefficient a(&,n) = gz(m(f, n),t(&,n)) and the replacement Jacobian J(z,t) = &xne—&ne #
= 0 on the set Goo = {(€,) : ha{n,0} < ha{€,0}, 1> 0;h®) [y, 0] < AV[g, 0], 1 < 0; € > 0}

For any point M(x,t) € G, the double iterated integral (2.1) is equal to the double integral
over the curvilinear characteristic triangle AM PQ with vertex M (z,t) € G and the vertices of its
base P (ho{g2(x,t),0},0), Q (h1{g1(z,t),0},0) (Fig. 1, a; Fig. 2, a):

falt) 1 fla, 1)
(2. 0) dxdt = 3 / o 0) dxdt, (2.14)
AMPQ AMPQ

1
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ala o/b
T M(x,1) P Q
S
G+ P Q(S\’ f)!
7
3 ¢ A namaie
\%\
: & © 2
0'(0,h710,g,(x, 1)) % A l
) &

=
@)

|
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®
N oy v
‘g | ll\
4 3 u \
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Fig. 1:
The region of integration on the set G: a — for the function F'; b — for the function F'

ala o/b
T M(x,1) P Q
I,
— — — — — ﬁ ~
n ' : e
|
s 0 1 !

O| Phig,(x,1,0},0) O(h{g,(x,1),0},0) 2,(h,{1,0},0) E v F'g 9
e 1g. 2:

The region of integration on the set G_a — for the function F; b — for the function F

By passing to new variables of type (2.3) in function (2.14):

V= 91(877_)7 p= 92(877—)7 (215)

in the plane Ovp, we find the image A MPQ of triangle A M PQ. Two characteristics g2(s,7) =
= go(z,t) and ¢1(s,7) = g1(x,t), which intersect axis Os at 7 = 0, respectively, at the base points
P (h2{g2(z,t),0},0) and Q (h1{g1(z,1),0},0). 3 N

The mapping (2.3) maps a point M (x,t) of the plane OsT to a point M (&, n) of the plane Ovp.
After replacement (2.15) of the characteristic equations g;(s,7) = gi(z,t), i = 1, 2, of the sides
MP and MQ of the triangle AM PQ become respectively the equations v = g1 (s, 7') =gi(x,t) =&,
p = ga(s,7) = galx,t) = n of the sides MP and MQ for the triangle AMPQ in the plane Ovp.
Replace (2.15) with the coordinates of the base vertices P(ha2{g2(z,t),0},0), Q(h1{g1(z,t),0},0)
and by virtue of the first inversion identities from (1.4) we find the coordinates

=0 (h2{777 0}70) y P =92 (h2{7770}70) =nv=aq (h1{€70}70) =& p= g2 (h1{€70}70)

of the vertex P (g (h2{n,0},0),n), Q (£, g2 (h1{&,0},0)) of the triangle AMPQ in the plane Ovp,
since g1 (z,t) =&, g2(x,t) = n in (2.3) (Fig. 1, b; Fig. 2, b).

Putting 7 = 0 in change (2.15), we arrive at the equations v = ¢1(s,0), p = g2(s,0), of which,
due to the uniqueness of the solutions s = hi1{v,0}, s = ha{p,0} of the equation system (2. 15)
with respect to (s,7) and the second inversion identities from (1.4), we derive the equation v =
= g1(ha{p,0},0) of the curvilinear base PQ of the triangle AMPQ in Ovp (Fig. 1, b; Fig. 2, b).
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Due to the mutually inverse orientation of the lateral sides of the triangles AM PQ and AM PQ,
the double integral (2.14) becomes an iterated integral as a result of the substitution (2.3)

o n 3 o
. 1 1
F&n) =5 / gg’nief(&n)d&dn =3 / / ggz p;J(V, p)dvdp,  (2.16)
ANEO i g2 {010) gr(haipor)

where the points O(0,0), M(&,1), P (g1 (h2{n,0},0),1), Q (£, g2 (h1{€,0},0)) on the plane Ovp
are respectively the images of the points O(0,0), M(x,t), P (h2{g2(z,t),0},0), Q (h1{g1(z,t),0},0)
from the plane Ost after variable transformation (2.15). For the existence of the integral (2.16), it is
important that if the function f € C(G) is continuous, then, due to the continuity of the Jacobian

J(v, p) # 0 of the transformation (2.15), the function f € ~C’(éoo) in (2.16) is also continuous.
We take partial derivatives with respect to 1 and & of F' from (2.16) and have a mixed derivative

PPEm) _1fEn) 1fEm
dED 2.a(&,n) 2a(&,n)J(x,t)’

since the inverse Jacobian [J(¢,n)]”! = Tety — xpte = 1/J(z,t) # 0 on Goo. Thus, the function F
after the change (2.3) satisfies equation (2.13) on G. Theorem 2.1 is proved.

J(&n) = (&) € G, (2.17)

Corollary 2.1. [4] Let the coefficient is strictly positive a(x,t)>ag>0, (2,t)EGuo), a€C?* (G o).
If the right-hand side f of the equation (1.1) does not depend on x or on t in G, then the continuity
of fint or in x, respectively, is necessary and is sufficient for the function F from (2.1) to be a
classical solution of the inhomogeneous equation (1.1) in G

Proof. The necessity of the continuity of f € C[0,4o00[ in ¢ or in x is strictly justified in the
proof of Theorem 2.1. In fact, it remains to show the sufficiency of this continuity of f € C[0, +o0o[
in ¢t or in x by the fact that in this case the corresponding integral smoothness requirements (2.2)
are automatically satisfied.

If the right-hand side f = f(¢) does not depend on x, then function F from (2.1) takes the form

t h {gl (w)t) 77—}

F(x,t) = (2.18)

1
2 a(|s, 7)
0 h2{g2(m’t)v7_}

According to the proof of Theorem 2.1, the inclusion FEC?(G.,) is sufficient for the function (2.18)
to be a solution of the equation (1.1) in G . Using the second inversion identities from (1.4), in G
for all f(t) € C[0, 400 its first partial derivatives are obviously continuously differentiable

1 / [ Y RSN (0] P
fiz3) I R [ T R ’

_ 1 (T) 8h1{gl (xvt)vT} _ f(T) 8h2{92(x>t)77} -
fo= /|: (|h1{gl(x7t)77}|>7) Ox a(’h2{92(x>t)77-}|77_) Ox :|d

If the right side f = f(x) does not depend on ¢, then the function F' from (2.1) takes the form

1 t hl{gl(wvt)ﬂ—} f( )
S
F(z,t) = 2/ / a5, 1) dsdr, (2.19)
0 hQ{Q?(xvt)vT}

where the functions f and a are even extensions of the functions f and a from x>0 to all x <0. Same
as at the beginning of the proof of the corollary 2.1, from Theorem 2.1 we have that if a function
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F €0?(Gy), then it satisfies equation (1.1) in G Let us check its twice continuous differentiability
for f(z) € C[0,4o0[. The first partial derivative with respect to ¢ of (2.19) is equal to the function

1t
Ft—2/
0

to which we also applied the second inversion identities from (1.4). When we move here to the new
integration variables y = hi{g1(z,t),7}, 2 = ho{ga2(x,t), 7}, then on G5 we obtain the obvious
continuously differentiable representation of this derivative

f(hl{gl(x7t)77—}) 8h1{gl($7t)77—}_ f(h2{92(x7t)77—}) 8h2{92(x7t)77} dr
d(hl{gl(x,t),T},T) ot v(hg{gg(x,t),T},T) ot ’

Fyet) =+ / ) Oh{gi(@,0),7} (Om{gr (@, t), 7)) dy—
t\T, 2 a(y, ) ot or o Y
hl{gl (J,‘,t), 0} T= [y,g1(x,t)}
_1 / f(y) 8h2{92(x7t)77—} <8h2{92(x7t)77—}>_1 dZGCl(G )
2 ay, ) ot or O o) ’

ha {92 (Z‘,t), O}

where we have used the second inversion identities from (1.4) and the identities 7 = h(D [y, g1 (x, t)],
7 = hP [z, go(x, )] due to the second inversion identities from (1.6).
For all f(x) € C[0,4o0[ the first partial derivative with respect to = of (2.19) is the function

1 / Flindan(@.0).7Y) Ohilon(e.0).r)  Fa{mler)) Ohlla.0).7]
Fa 20 a(hi{g1(z,t),7},7) Ox a(ha{ge(x,t),7},7) o ’

in which we used the second inversion identities from (1.4). After passing here to the new integration
variables y = h1{g1(z,t), 7}, 2 = ho{ga2(z,t), 7} this partial derivative acquires the obvious for f(z)€
€ C|0, +oo[ continuously differentiable representation

dy—
r=hMWy,g1(z,t)]

Jo /x [ fly) om{g (1), 7} <8h1{91<1‘,t),7'}>_1]

2 a(y, ) ox or

2
h1 {gl (Ivt)v 0}

dz € Cl(Goo)7
7=h(2)[2,g2(x,t)]

1 F(y) Ohofgo(a,t), 7} (Ohafga(a,t),7}\
2 / [d(y,T) ox < or > ]

h2{92 ($7t)1 O}

where we have applied the same identities as for the partial derivative of F' with respect to ¢.
Thus, the sufficiency of f € C[0, +o0] for F € C?(Gy) is verified. Corollary 2.1 is proved.

Corollary 2.2.[4] Let the coefficient be strictly positive, a(x,t) > ag > 0, (z,t) € G, a €
€ C?(Gwo). If the function f depends on x and on t, then for f € C(Gys) the requirements that the
integrals from (2.2) belong to the space C1(Gs) are equivalent to the requirements that they belong
to the space C (10 (Gyo) or C OV (Gop). Here C (19 (Gyy), C OV (Gy) are, respectively, the spaces
of continuously differentiable with respect to x and t and continuous with respect to t and x functions
on Gso

Proof. The continuously differentiable right-hand sides f€C? (G« ) obviously satisfy the integral
requirements from (2.2). By replacing s; = h;{g;(x,t), 7} by the integration variable 7, for example,
the integrals from (2.2) are reduced to the integrals

j (hefgi(a, 1), 7} 7) hifgi(ar 0,7}
5 (|hi{gi(x,t), T}, T) 0gi
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_ / f<rsz-r,f>ahi{gi<x,t>w}<ahi{gi<m,t>,f}>‘l
a(|si|, ) 09; or
hi{gi(mvt)»o}

which for f € C'(G) are indeed continuously differentiable with respect to z and ¢ in G, because

in the last integrals (2.20) under the modulus [s;| the variables x and ¢ are missing. Otherwise, the

module would give a discontinuity of derivatives. Here we have applied the second inversion identities

from (1.4) and the equalities 7 = h()[s;, gi(x,t)], i = 1, 2, due to the second identities from (1.6).
First, for smoother f € C'(Gs), we take the derivative of the integrals (2.2)

ds;, i =1, 2, (220)
T=h(i>[8i,gi(mvt)]

OH, _ f(hiloi(e,0).0.1) Ohilate. 0.1} ” (ot Ol
ot a(’hz{gz( Z, )7t}‘7t) 9gi |h {gz )7T}|7T) dg;

t

_f(.%',t) 1 z+1 / |h {gl )7T}|7T)8hi{gi(x7t)77—}, Sa—
B i + 0/|:CL |h {gl )>T}|7T) 9gi :| ir=

x

- 6{((; 7?) (91‘(331, gy, + 0 a0 %Zi, i=1,2 (2.21)

due to the second inversion identities from (1.4), to the well known formula for the derivative of the
inverse function, to the relations (2.7) and to the equalities

8f(‘hi{gi(x7t)77—}’7 T) _ 8f(|hi{gi(x7t)7 T}‘vT) 8hi{gi(m7t)7 T}

ot Oh; dg; (gi)t =
_ (_1)i+1a($’t)ﬁf(\hi{giézt)m}hT) ahi{gg;ai, t), T} (91), = (~1) a(z, 1) 3f(|hi{gi(8mm, 1&),7-}\,7—)7
2h-L g (x . 2 Agi(x, 1), T
2 hz{g;ég;t), b_oh {ga(gg ‘) }(gi(l',t))t —
8 h; {gz(x t) T} 82hi{gi($at)’7—}

= (_1)i+1a’(w7 t) dg 2 (gl(x7t))m = (_1)i+1a(x7t) 920g; s =1, 2.

Then two equalities (2.21) of the first and last parts, which do not contain explicit derivatives
of function f with respect to x and t in G, are extended by passing to the limit in f smoother
f € C1(Gw) into continuous functions f € C(Gy), satisfying (2.2) in G [6]. Two equalities (2.21)
obtained after passing to limit confirm the assertion of Corollary 2.2 on G,. Corollary 2.2 is proved.

3. General integral of the model telegraph equation

When solving mixed (initial-boundary) problems for the model telegraph equation (1.1) on half-
strip plane by “method of auxiliary mixed problems for wave equations on the half-line” from [7], it
is important to know its general integral (the set of all twicely continuously differentiable solutions).

Theorem 3.1. [4] Let a(z,t) > ag >0, (,t) € Gx), a € C?(Guo) and (2.2) for f € C(Gso). Then
the general integral of equation (1.1) in G in the set of classical solutions are the functions

u(z,t) = f(o1(2, ) + faloa(e, 1)) + F(z,1), (2,t) € Goo, (3.1)

where fl and f2 are any twicely continuously differentiable functions of the variables £, 1 having the
form

F1() = f1(&) + f2(92(0,0)), fo(n) = f2(n) — f2(g2(0,0)). (3.2)

Proof. For the continuous right-hand side f € C(G«), the integral smoothness requirements (2.2)
from Theorem 2.1 are obviously equivalent to the integral smoothness requirements (2.2) with the
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requirement that the first partial derivatives of the functions H;(x,t), i = 1, 2, be continuous on the
sets G4, G_ and in some neighborhood of characteristic go(z,t) = ¢2(0,0) (Fig. 1, a; Fig. 2, a). By
Theorem 2.1, for the right-hand side f € C(Gs) and H;(z,t) € C1(Gw), i = 1, 2, the function F
of the form (2.1) is twicely continuously differentiable and satisfies the equation (1.1) pointwise on
Goo and the equation (2.13) on G due to the identity (2.17) established above.

Therefore, formulas (3.1), (3.2) are indeed the set of all classical solutions to the model telegraph
equation (1.1) on G&. The classical solutions (3.2) to the homogeneous equation (1.1) are obtained
by “the method of immersion in solutions with fixed values”, proposed in [8] in order to simplify the
calculation of explicit solutions to systems of differential equations. It is clear that, in equalities (3.2)
the functions f1, fo and fi, fo, respectively, are twicely continuously differentiable at the same time.
The general integral (3.1) of all classical solutions to the inhomogeneous equation (1.1) is the sum
of an general integral ug(z,t) = f1(g1(,t)) + fo(ga(z, 1)) to an homogeneous equation (1.1) and the
particular classical solution F' of the form (2.2) to the inhomogeneous equation (1.1). Theorem 3.1
is proved.

The smooth non-degenerate coefficient a simplifies requirements (2.2) on f € C(Gwo).

Remark 3.1. For the coefficient a(x,t)>ag>0, (z,t) EGw), a€C?(Gs) the integral smoothness
requirements (2.2) on the continuous f € C(G) are equivalent to the requirements

t
/f |hi{gi(z,t), 7}, 7) dT € CI(GOO),i:1, 2.
0

4. Conclusion

The criterion for twice continuous differentiability of the solution F' of the form (2.1) to the inhomo-
geneous model telegraph equation (1.1) with a variable rate a(z,t) in the first quarter of the plane
G oo 1s found. It consists of the continuity requirement right-hand side f € C(G&) and two integral
smoothness requirements (2.2) on the set Goo. The general integral (the general solution) (3.1), (3.2)
from twicely continuously differentiable functions determines the explicit resolution of various mixed
(initial-boundary) problems for the inhomogeneous model telegraph equation (1.1) on the set G

The work is supported by the Belarusian Republican Foundation for Basic Research (grant
Ne F22KI1-001 dated November 05, 2021).
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