Please use this identifier to cite or link to this item:
https://elib.bsu.by/handle/123456789/280107
Title: | Texture analysis and classification of medical images based on deep learning methods |
Authors: | Karshakevich, D. V. |
Keywords: | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Биология |
Issue Date: | 2022 |
Publisher: | Минск : РИВШ |
Citation: | Компьютерные технологии и анализ данных (CTDA’2022) : материалы III Междунар. науч.-практ. конф., Минск, 21–22 апр. 2022 г. / Белорус. гос. ун-т ; редкол.: В. В. Скакун (отв. ред.) [и др.]. – Минск : РИВШ, 2022. – С. 300-303. |
Abstract: | Different approaches to the classification of histological images of three different classes were experimentally investigated: metastasis-affected lymphoid tissue region, healthy lymphoid tissue region, and lymph node capsule. The paper investigated what quality of classification can be achieved by using only the classical approaches of texture feature extraction proposed by Haralick in 1970, then using neural networks and finally by combining both approaches |
Description: | Секция «Биоинформатика» |
URI: | https://elib.bsu.by/handle/123456789/280107 |
ISBN: | 978-985-586-561-3 |
Licence: | info:eu-repo/semantics/openAccess |
Appears in Collections: | 2022. Компьютерные технологии и анализ данных (CTDA’2022) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
300-303.pdf | 334,64 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.