Logo BSU

Please use this identifier to cite or link to this item: https://elib.bsu.by/handle/123456789/280107
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKarshakevich, D. V.
dc.date.accessioned2022-05-24T13:13:48Z-
dc.date.available2022-05-24T13:13:48Z-
dc.date.issued2022
dc.identifier.citationКомпьютерные технологии и анализ данных (CTDA’2022) : материалы III Междунар. науч.-практ. конф., Минск, 21–22 апр. 2022 г. / Белорус. гос. ун-т ; редкол.: В. В. Скакун (отв. ред.) [и др.]. – Минск : РИВШ, 2022. – С. 300-303.
dc.identifier.isbn978-985-586-561-3
dc.identifier.urihttps://elib.bsu.by/handle/123456789/280107-
dc.descriptionСекция «Биоинформатика»
dc.description.abstractDifferent approaches to the classification of histological images of three different classes were experimentally investigated: metastasis-affected lymphoid tissue region, healthy lymphoid tissue region, and lymph node capsule. The paper investigated what quality of classification can be achieved by using only the classical approaches of texture feature extraction proposed by Haralick in 1970, then using neural networks and finally by combining both approaches
dc.language.isoen
dc.publisherМинск : РИВШ
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Биология
dc.titleTexture analysis and classification of medical images based on deep learning methods
dc.typeconference paper
Appears in Collections:2022. Компьютерные технологии и анализ данных (CTDA’2022)

Files in This Item:
File Description SizeFormat 
300-303.pdf334,64 kBAdobe PDFView/Open
Show simple item record Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.