Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/273502
Заглавие документа: Fractional differential model of the spread of COVID-19
Другое заглавие: ДРОБНО-ДИФФЕРЕНЦИАЛЬНАЯ МОДЕЛЬ РАСПРОСТРАНЕНИЯ COVID -19
Авторы: Efimova, T. A.
Timoshchenko, I. A.
Abrashina-Zhadaeva, N. G.
Тема: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика
Дата публикации: 2021
Библиографическое описание источника: Journal of Belarusian State University. Physics. No. 3. 2021. P. 40-48.
Аннотация: This paper studies a mathematical model of the spread of the COVID-19 pandemic based on ordinary differential equations with a time-fractional derivative. The model takes into account the susceptibility of the population to infection, the incubation period, the number of contacts between healthy and sick people, number of infected, recovered and deceased people in a certain period. To test the model a comparison was made with models obtained with a time derivative of integer orders, with known data for the Italian region of Lombardy. The results suggest that the use of a mathematical model based on a time-fractional derivative with the help of data such as susceptibility of the population to infection, incubation period, number of infected, recovered and deceased people in a certain period, ultimately can help health authorities to develop effective measures against the pandemic. This is especially possible if we expand the model and consider partial differential equations describing the convection-diffusion process, taking into account the prediction of the geographical distribution of the most important medical resources.
URI документа: https://elib.bsu.by/handle/123456789/273502
Лицензия: info:eu-repo/semantics/openAccess
Располагается в коллекциях:Кафедра компьютерного моделирования (статьи)

Полный текст документа:
Файл Описание РазмерФормат 
2021 - Journal BSU - Fractional differential model of the spread of COVID-19.pdf1,72 MBAdobe PDFОткрыть
Показать полное описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.