Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ:
https://elib.bsu.by/handle/123456789/266403
Title: | The Kullback-Leibler information function for infinite measures |
Authors: | Bakhtin, V. Sokal, E. |
Keywords: | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика |
Issue Date: | 2016 |
Publisher: | MDPI AG |
Citation: | Entropy 2016;18(12). |
Abstract: | In this paper, we introduce the Kullback-Leibler information function ρ(ν, μ) and prove the local large deviation principle for σ-finite measures μ and finitely additive probability measures ν. In particular, the entropy of a continuous probability distribution ν on the real axis is interpreted as the exponential rate of asymptotics for the Lebesgue measure of the set of those samples that generate empirical measures close to ν in a suitable fine topology. |
URI: | https://elib.bsu.by/handle/123456789/266403 |
DOI: | 10.3390/e18120448 |
Scopus: | 85007497448 |
Appears in Collections: | Архив статей механико-математического факультета до 2016 г. |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
entropy-18-00448-v2.pdf | 293,73 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.