Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/266403
Title: The Kullback-Leibler information function for infinite measures
Authors: Bakhtin, V.
Sokal, E.
Keywords: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика
Issue Date: 2016
Publisher: MDPI AG
Citation: Entropy 2016;18(12).
Abstract: In this paper, we introduce the Kullback-Leibler information function ρ(ν, μ) and prove the local large deviation principle for σ-finite measures μ and finitely additive probability measures ν. In particular, the entropy of a continuous probability distribution ν on the real axis is interpreted as the exponential rate of asymptotics for the Lebesgue measure of the set of those samples that generate empirical measures close to ν in a suitable fine topology.
URI: https://elib.bsu.by/handle/123456789/266403
DOI: 10.3390/e18120448
Scopus: 85007497448
Appears in Collections:Архив статей механико-математического факультета до 2016 г.

Files in This Item:
File Description SizeFormat 
entropy-18-00448-v2.pdf293,73 kBAdobe PDFView/Open
Show full item record Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.