Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/266403
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorBakhtin, V.-
dc.contributor.authorSokal, E.-
dc.date.accessioned2021-08-20T08:50:19Z-
dc.date.available2021-08-20T08:50:19Z-
dc.date.issued2016-
dc.identifier.citationEntropy 2016;18(12).ru
dc.identifier.urihttps://elib.bsu.by/handle/123456789/266403-
dc.description.abstractIn this paper, we introduce the Kullback-Leibler information function ρ(ν, μ) and prove the local large deviation principle for σ-finite measures μ and finitely additive probability measures ν. In particular, the entropy of a continuous probability distribution ν on the real axis is interpreted as the exponential rate of asymptotics for the Lebesgue measure of the set of those samples that generate empirical measures close to ν in a suitable fine topology.ru
dc.language.isoenru
dc.publisherMDPI AGru
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математикаru
dc.titleThe Kullback-Leibler information function for infinite measuresru
dc.typearticleru
dc.rights.licenseCC BY 4.0ru
dc.identifier.DOI10.3390/e18120448-
dc.identifier.scopus85007497448-
Располагается в коллекциях:Архив статей механико-математического факультета до 2016 г.

Полный текст документа:
Файл Описание РазмерФормат 
entropy-18-00448-v2.pdf293,73 kBAdobe PDFОткрыть
Показать базовое описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.