Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ:
https://elib.bsu.by/handle/123456789/265205
Заглавие документа: | Internal optimization of the texture component approximation method |
Авторы: | Nikolayev, D. Lychagina, T. Rusetsky, M. Ulyanenkov, A. Sasaki, A. |
Тема: | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Физика |
Дата публикации: | 2015 |
Издатель: | Internal optimization of the texture component approximation method |
Библиографическое описание источника: | IOP Conference Series: Materials Science and Engineering; 2015. |
Аннотация: | The component approximation method for the reconstruction of orientation distribution function (ODF) is based on the assumption that the texture could be presented as a weighted linear combination of distributions depending on the parameters, which are related to the position of bell shaped function in orientation space and to the dispersion. The method uses a minimization procedure to obtain the values of ODF parameters. Traditionally, the mean- square deviation of the measured and recalculated pole figures is minimized. However, the quantitative measure of the fit is RP value which differs from the mean-square deviation. In the present work it is suggested to minimize the RP value to obtain ODF parameters. We are using Trust Region method for solving a non-linear optimization problem. The convergences of the proposed method for different minimized functional are compared. We also illustrate a usage of the different objective function on modeling data for the cubic crystalline symmetry. This study is fulfilled using new RIGAKU software for quantitative texture analysis. |
URI документа: | https://elib.bsu.by/handle/123456789/265205 |
DOI документа: | 10.1088/1757-899X/82/1/012007 |
Scopus идентификатор документа: | 84928791583 |
Располагается в коллекциях: | Статьи НИУ «Институт ядерных проблем» |
Полный текст документа:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
Nikolayev_2015_IOP_Conf._Ser.__Mater._Sci._Eng._82_012007.pdf | 1,14 MB | Adobe PDF | Открыть |
Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.