Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/265205
Заглавие документа: Internal optimization of the texture component approximation method
Авторы: Nikolayev, D.
Lychagina, T.
Rusetsky, M.
Ulyanenkov, A.
Sasaki, A.
Тема: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Физика
Дата публикации: 2015
Издатель: Internal optimization of the texture component approximation method
Библиографическое описание источника: IOP Conference Series: Materials Science and Engineering; 2015.
Аннотация: The component approximation method for the reconstruction of orientation distribution function (ODF) is based on the assumption that the texture could be presented as a weighted linear combination of distributions depending on the parameters, which are related to the position of bell shaped function in orientation space and to the dispersion. The method uses a minimization procedure to obtain the values of ODF parameters. Traditionally, the mean- square deviation of the measured and recalculated pole figures is minimized. However, the quantitative measure of the fit is RP value which differs from the mean-square deviation. In the present work it is suggested to minimize the RP value to obtain ODF parameters. We are using Trust Region method for solving a non-linear optimization problem. The convergences of the proposed method for different minimized functional are compared. We also illustrate a usage of the different objective function on modeling data for the cubic crystalline symmetry. This study is fulfilled using new RIGAKU software for quantitative texture analysis.
URI документа: https://elib.bsu.by/handle/123456789/265205
DOI документа: 10.1088/1757-899X/82/1/012007
Scopus идентификатор документа: 84928791583
Располагается в коллекциях:Статьи НИУ «Институт ядерных проблем»

Полный текст документа:
Файл Описание РазмерФормат 
Nikolayev_2015_IOP_Conf._Ser.__Mater._Sci._Eng._82_012007.pdf1,14 MBAdobe PDFОткрыть
Показать полное описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.