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Abstract. The component approximation method for the reconstruction of orientation 
distribution function (ODF) is based on the assumption that the texture could be presented as a 
weighted linear combination of distributions depending on the parameters, which are related to 
the position of bell shaped function in orientation space and to the dispersion. The method uses 
a minimization procedure to obtain the values of ODF parameters. Traditionally, the mean-
square deviation of the measured and recalculated pole figures is minimized. However, the 
quantitative measure of the fit is RP value which differs from the mean-square deviation. In the 
present work it is suggested to minimize the RP value to obtain ODF parameters. We are using 
Trust Region method for solving a non-linear optimization problem. The convergences of the 
proposed method for different minimized functional are compared. We also illustrate a usage of 
the different objective function on modeling data for the cubic crystalline symmetry. This study 
is fulfilled using new RIGAKU software for quantitative texture analysis. 
 

1. Introduction 
The core problem of the quantitative texture analysis is the ODF reconstruction from the 
measured pole figures. The component approximation method [1-3] is recently developed for 
the ODF reconstruction. One of the advantages of the method is a clear physical meaning of 
the computed parameters. The central difficulty of this method is the nonlinear minimization 
problem which should be solved for the parameters in question.  
 
2. Component approximation method 
Before introduction of the ODF [4] the texture had been characterized by the analysis of pole 
figures, which assigned one or several preferred orientations explaining the bell shaped peaks 
on the measured pole figures. The general idea of the component approximation method is a 
formalization and quantification of such approach. The texture is assumed to be caused by a 
linear combination of the components centered at the positions of the preferred orientations 
in the orientation space or rotation group SO(3). Formally this means the ODF can be 
presented as follows: 
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Here ),,( 0 nn
p ggf    and  ),,,( ktot

f ngngf   are the peak and the fiber component, 

respectively. Components are non-negative functions integrating to 1 on SO3 (to be 
probability density) The values nA  and kA  are the weights, n  and k  are the parameters 

describing the width of the components, and ),,(0 nnnng   are parameters describing the 

peak position or position of the ideal orientation on the SO(3) group, NUMB is the number of 
peak components. ),(),,( hhtoyyt ngn   

  are the parameters describing the fiber 

component position,  NUMF is the number of fiber components, and FON  is the background 
value or isotropic component weight. Weights are non-negative and sum up to 1
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1 . It is important to note that this is a constrained to the 

optimization problem.  
The recalculated pole figures for the ODF in the form (1) are expressed in the following way: 
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For a special appearance of the components, the expression for the recalculated pole figures 
could also be presented in the forms given below: 

• Brownian motion distribution 
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• Fisher distribution 
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These both distributions have a similar nature as normal distribution. There are two more 
distributions, namely Lorentz [5] and the hyperspherical de la Vallėe Poussin kernel [6], 
which also can be used as texture components. Finally, the following distribution 
approximates [7] the normal one, too:  
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The distributions with a normal nature do not allow the isotropic generalization, and only the 
last one has a simple form, which does not contain the series or integrals. The main problem 
of the quantitative texture analysis thus can be formulated and resolved as follows. For the 
existing NPF measured pole figures, we can imply the texture is described by NUMF fiber 
components and NUMB peak components. The certain suggestions can be made about the 
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initial values of the components parameters using the pole figure pictures. By using the form 
(2) of the recalculated pole figures, the component method is applied to find the 
corresponding parameters of peak and fiber components, which are found from the 
minimum of the functional: 
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The total number of the parameters to minimize is 165  NPFNUMFNUMB . There 
are several approaches for the choice of the functional. The old approach is based on the least 
squares minimization with the functional: 
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In [8-10] a set of alternative functionals had been proposed. We consider in this work the 
new approach with the functional in the form of RP value. The RP values are defined as 
follows [5]: 
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Here  is a sensitivity level, and the minimization is fulfilled by the TRUST REGION method 
[11], which has been recently developed for finding of global maxima in the nonlinear 
optimization problems.  
 
3. Numerical examples 
The solution of the nonlinear optimization problem requires an essential number of the 
recalculated pole figures, computed with different parameters. To reach a reliable result in a 
reasonable time, the component function must be computed as fast as possible. Despite the 
distributions (3) and (4) have very useful features (entropy maximization, fundamental 
solution of the diffusion equation, etc.), the distribution (5) is much easier and faster for 
computation. The figure 1 shows the correspondence between all these distributions. 

 
Fig 1. The illustration of the distributions used in calculations. The parameters of the 

distributions are S = 20,  = 39.483,  2 =2.5435×10⁻². All the parameters correspond to a 
full width at the half maximum b = 30.17°. The dashed line is for distribution (3) and (4), the 
solid line is for (5). 
 
For a smaller value of width, these distributions become indistinguishable, and thus the 
distribution with a fastest computation time can be used, which is the distribution (5). 
Because of all these tree distributions approximate each other quite well, we can use any of 
them for the further analysis after a proper adjustment of parameters. For example, the 
simplest form of C coefficients has the distribution (3), and we used formula (3) for the peak 
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components and (4) for the fiber components to generate numerical example. The connection 
between the parameters describing the width of the components   and b is presented in [12-
13]. 
 
Table 1. Summary of the numerical experiment 

Parameter model initial  
assumption 

optimized (old 
approach) 

optimized (new 
approach) 

),,(0 g  }45,45,45{  }46,46,46{  }96.44,04.45,01.45{  }16.45,20.45,16.45{ 

peakb  15° 15° 14.97° 14.92° 

peakA  0.450 0.450 0.447 0.449 

( , )t y yn  
 }10,10{   }11,11{   }11.00,10.34{   }10.99,10.30{   

0 ( , )t h hg n  
 }10,10{   }11,11{   }10.18,10.18{   }10.21,10.21{   

fiberb  15° 15.66° 15.67° 15.67° 

fiberA  0.450 0.450 0.454 0.453 

FON 0.10 0.10 0.096 0.101 

 
The corresponding pole figures are shown in the figure 2. The functionals (6) and (7) have 
been used for nonlinear minimization procedure, and the distribution (5) is applied during 
the fitting procedure. The results of the fit are collected in the table 1. 
 

Fig 2. The model pole figures (100), (110), (111) and (311) for cubic crystal and orthorhombic 
sample symmetry simulated for one peak and one fiber component with parameters 
presented in the table 1 (1st row). The spatial distribution of the recalculation error (2nd-3rd 
rows for the old and new approaches respectively). 
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Both procedures converge to the similar correct results. The minimization procedure with 
functional (7) converges with 33 iterations and mean RP=1.93, whereas ones with functional 
(6) converges with 18 iterations and mean RP=1.05. The recalculated pole figures are 
indistinguishable with the modeled ones. The functional (6) evidently converges faster due to 
a less number of iterations required, and the RP mean value over all pole figures is slightly 
smaller. 

4. Discussion
The component approximation method has a number of evident advantages, which are 
demonstrated in the paper. The reconstructed parameters have a clear physical meaning. The 
number of pole figures required for reconstruction of ODF is relatively small. However, the 
component approximation method has some disadvantages. The method is not automatic, 
i.e. the researcher needs to choose the number and the type (peak or fiber) of components. In 
the case of not distinguishable peak and fiber types of components, the method is not 
recommended for use to avoid a misinterpretation of the texture character. The method is 
sensitive to a self-consistency of the measured pole figures. The measured pole figures must 
be self-consistent, but due to experimental errors this condition can be violated. Another 
challenging factor influencing the application of the method is a use of non-linear 
minimization problem. The results of the ODF reconstruction by component approximation 
method depend on the specific component choice and the functional to be minimized, which 
both are the key levers to optimize the analysis. The RP value is found to be more stable but 
less sensitive parameter for minimization procedure and the functional (6) seems to be more 
sensitive one. As a consequence, for example, for the noisy data the using of the RP value is 
preferable.  
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