Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ:
https://elib.bsu.by/handle/123456789/262844
Заглавие документа: | Free vibrations of nonlocally elastic rods |
Авторы: | Mikhasev, G. Avdeichik, E. Prikazchikov, D. |
Тема: | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Механика |
Дата публикации: | 2019 |
Издатель: | SAGE Publications Inc. |
Библиографическое описание источника: | Math Mech Solids 2019;24(5):1279-1293. |
Аннотация: | Several of the Eringen’s nonlocal stress models, including two-phase and purely nonlocal integral models, along with the simplified differential model, are studied in the case of free longitudinal vibrations of a nanorod, for various types of boundary conditions. Assuming the exponential attenuation kernel in the nonlocal integral models, the integro-differential equation corresponding to the two-phase nonlocal model is reduced to a fourth-order differential equation with additional boundary conditions, taking into account nonlocal effects in the neighbourhood of the rod ends. Exact analytical and asymptotic solutions of boundary-value problems are constructed. Formulas for natural frequencies and associated modes found in the framework of the purely nonlocal model and its ‘equivalent’ differential analogue are also compared. A detailed analysis of solutions suggests that the purely nonlocal and differential models lead to ill-posed problems. |
URI документа: | https://elib.bsu.by/handle/123456789/262844 |
DOI документа: | 10.1177/1081286518785942 |
Scopus идентификатор документа: | 85049908400 |
Финансовая поддержка: | The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: GM and DP acknowledge the Erasmus+ financial support, allowing visits of GM to Keele University. |
Располагается в коллекциях: | Кафедра био- и наномеханики (статьи) |
Полный текст документа:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
Paper1-MAP-modif03.06.pdf | 377,51 kB | Adobe PDF | Открыть |
Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.