Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/261587
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorKim, C.-
dc.contributor.authorDudin, S.-
dc.contributor.authorDudina, O.-
dc.date.accessioned2021-06-11T09:52:32Z-
dc.date.available2021-06-11T09:52:32Z-
dc.date.issued2019-
dc.identifier.citationMathematics 2019;7(9).ru
dc.identifier.urihttps://elib.bsu.by/handle/123456789/261587-
dc.description.abstractWe consider a queueing network with a finite number of nodes and servers moving between the nodes as a model of car sharing. The arrival process of customers to various nodes is defined by a marked Markovian arrival process. The customer that arrives at a certain node when there is no idle server (car) is lost. Otherwise, he/she is able to start the service. With known probability, which depends on the node and the number of available cars, this customer can balk the service and leave the system. The service time of a customer has an exponential distribution. Location of the server in the network after service completion is random with the known probability distribution. The behaviour of the network is described by a multi-dimensional continuous-time Markov chain. The generator of this chain is derived which allows us to compute the stationary distribution of the network states. The formulas for computing the key performance indicators of the system are given. Numerical results are presented. They characterize the dependence of some performance measures of the network and the nodes on the total number of cars (fleet size of the car sharing system) and correlation in the arrival processru
dc.description.sponsorshipFunding: The work by Chesoong Kim has been supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No. 2018K2A9A1A06072058). The work by Sergei Dudin and Olga Dudina has been supported by “RUDN University Program 5-100”.ru
dc.language.isoenru
dc.publisherMDPI AGru
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетикаru
dc.titleQueueing network with moving servers as a model of car sharing systemsru
dc.typearticleru
dc.rights.licenseCC BY 4.0ru
dc.identifier.DOI10.3390/math7090825-
dc.identifier.scopus85072336462-
Располагается в коллекциях:Статьи факультета прикладной математики и информатики

Полный текст документа:
Файл Описание РазмерФормат 
mathematics-07-00825.pdf315,74 kBAdobe PDFОткрыть
Показать базовое описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.