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Abstract: We consider a queueing network with a finite number of nodes and servers moving
between the nodes as a model of car sharing. The arrival process of customers to various nodes
is defined by a marked Markovian arrival process. The customer that arrives at a certain node
when there is no idle server (car) is lost. Otherwise, he/she is able to start the service. With known
probability, which depends on the node and the number of available cars, this customer can balk
the service and leave the system. The service time of a customer has an exponential distribution.
Location of the server in the network after service completion is random with the known probability
distribution. The behaviour of the network is described by a multi-dimensional continuous-time
Markov chain. The generator of this chain is derived which allows us to compute the stationary
distribution of the network states. The formulas for computing the key performance indicators of
the system are given. Numerical results are presented. They characterize the dependence of some
performance measures of the network and the nodes on the total number of cars (fleet size of the car
sharing system) and correlation in the arrival process.
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1. Introduction

During the past few years, car sharing services have quickly developed in many countries for
client transportation, especially in urban areas where there are many potential clients who are ready
to pay for the private mobility via the short-term use of a vehicle on a per trip basis. The use of well
managed car sharing services is profitable for individuals. They have enough mobility without buying
or leasing of expensive cars, its maintenance, possible repair, refueling, parking, paying taxes and
insurance, etc. The social profit is provided via more efficient use of parking places, the increase
in the throughput of the roads and a decrease in the probability of traffic jam, reduction of carbon
emission, etc. Car sharing services may be a profitable business if they are well built and managed.
One of the most important problems, which has to be resolved while starting or developing car sharing
service is to determine the number of required cars (fleet size). The problem of fleet management is
quite challenging and complicated. On the one hand, it is too costly to use (buy or lease) many cars,
due to relatively high cost, wearout, maintenance, etc. On the other hand, if the number of cars is
insufficient, the probability that a customer will not obtain access to the service on demand will be
high. Customers can cancel membership in the company providing this service and use service of
another car sharing or car-renting company. This, in turn, can essentially reduce the potential income
of the car sharing provider. The importance and profitability of car sharing services made it popular
both in real life and scientific literature. A recent survey and the detailed classification of the research
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in the field of car sharing are given, e.g., in the paper [1]. It may be noted that, following classification
of [1], we consider in the present paper "free-floating mode", which is now a popular model in the
literature. This means that the cars are freely parked in public spaces within the operational area.
The journey can start and finish at any point in this area. As recent papers in the field of car sharing,
we can also mention [2,3].

The theory of queueing networks seems to be an adequate tool for analysis of car sharing systems,
see [1]. Application of this theory is described, e.g., in [4,5] and references therein. In [4,5], the dynamics
of the car sharing system are described by a closed queueing network where the cars are interpreted
as the customers which are served by the servers (arriving clients). The analysis of the networks
implemented in [4,5] is based on mean value analysis or on the assumption about the existence of the
product form solution. This analysis is approximate.

Aiming to create a simple analytical model of a car sharing system, we consider this system as
an open queueing network. Customers are associated with clients. Servers correspond to the cars.
Each idle car can be located in a corresponding node (zone of the operational area). If the car is busy,
its location in the network is temporarily undefined for customers because they cannot observe it.
In this paper, we present an exact analysis of the constructed model of a car sharing system.

The study of queueing systems and networks with moving servers has not received proper
attention due to the mathematical complexity of such systems. As the simplest examples of
such systems (with the exception of the trivial examples of systems with servers vacations,
unreliable systems, and polling systems, in which a server sequentially connects to the existing
queues according to a certain schedule), we can note the following two systems. One of them
is the tandem system with moving servers that are dynamically redistributed between stations.
A part of the available servers is permanently assigned to tandem stations, and then the remaining
part is dynamically redistributed between stations depending on the ratio of the number of users
present at the corresponding station. For references to the results of the study of systems of this
type, see, for example, [6,7]. Another example is the system considered in [8]. This system is in fact a
natural generalization of the classic polling queueing systems, which are considered in a large number
of papers and books, for example, a recent survey [9], due to their wide applicability in the analysis
of various multiple access systems, including urban wireless networks, to the case of several servers.
In [8], it is assumed that the customers arrive at service systems located at the vertices of a graph.
Service of the users in this system is carried out by a finite number of servers. Each of the servers
provides service to one user at the vertex, in which it is located, and then moves to another vertex
arbitrarily, at which currently there is no server. We can also mention the works [10,11]. The servers are
distributed over the nodes of the network and from time to time they interchange the nodes, taking the
existing queues of users with them.

Therefore, the main contribution of our paper is the construction of the model of operation of
car-sharing systems as the semi-open queueing network with the random transition of the servers
between the nodes of the network. Such queueing networks are not considered in the existing literature
and our results represent significant contribution to the theory of queueing networks with arbitrary
topology and moving servers. Essential technical difficulty in analysis of such networks consists
of the complexity of the multidimensional Markov chain describing the behavior of the network.
We successfully overcome this difficulty only due to the recent experience in analysis of the semi-open
queueing networks without the movement of the servers via the analysis of Markov chains with
structured generator, see [12,13].

An essential advantage of the queueing network considered in our paper, compared to the
overwhelming majority of existing queueing networks literature, is the consideration of a quite general,
marked Markovian arrival process (MMAP) of customers that allows us to take into account random
fluctuations of the intensity of customers arrival in various nodes. Such fluctuations (e.g., due to the
increase in activity of customers at some periods of the day: morning, the time before and after lunch,
time after the end of the working day, late evening, etc.) take place in the overwhelming majority
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of real car sharing systems. At the same time, the majority of the research is implemented under
the assumption that the arrivals occur according to a stationary Poisson process that has a constant
arrival rate. Quite a short list of papers dealing with queueing networks with Markovian arrival
process (not relating with car sharing) can be found in recent papers by [12,14] and references therein.
A possibility of transition of servers between the nodes is not considered in these papers. An essential
novelty of the analysis in this paper is that the queueing network takes into account servers mobility
and their unavailability at any node during the service process. It is also worth noting that we allow
the scenario when the arriving customer meets idle servers in the target node, but he/she balks the
network with a certain probability, which depends on the node and the number of available cars. Such
a situation is typical in real car sharing systems because the client can refuse to go, e.g., because his/her
walking distance to the nearest car seems to be too long or the available car is not suitable for him/her.

The goal of the analysis implemented in this paper is the computation of the performance
measures of the system under the fixed number of cars N and estimation of possible variation of these
measures when the number N is changed. The results of this analysis can be used for the choice of the
optimal value of N. In addition, these results can be helpful in answering the question: whether or
not the existing distribution of the nodes of staring and finishing journey is satisfactory or it has to
be somehow varied. Such variation seems to be possible, e.g., via differentiation of the tariffs for the
use of cars depending on the time and the nodes of staring and finishing the journey. To implement
this analysis, we model the operation of the car sharing system in terms of a queueing network as
described in the next section.

In the following section, we build a mathematical model of a car sharing system as an open
queueing network with servers moving between the nodes of the network.

2. Mathematical Model

Let us assume that the operational area of a car sharing system is divided into K zones. There exists
statistics (or expert estimation) about:

• the pattern of the flow of potential users of the car sharing system, including the average arrival
rates to each zone at different periods of a day and night;

• the number N of cars in the car sharing system;
• the average duration of a trip (journey);
• the proportion of zones at which the journeys finish;
• the proportion of users, which had the intention to use a car at some zone, but then balk, despite

availability of a definite number of cars.

The client of a car sharing system is considered as a customer which receives service in a queueing
network. The queueing network consists of K nodes. The total number of servers (cars) in the network
is equal to N. The servers can move and change their location. The location of a busy server is not
monitored. The number of idle servers in each node is observed. It is random and can vary in the
interval [0, N]. This number can be changed at any instant of the start or finish of the trip of a client.
The sum of the numbers of idle servers in the nodes also can vary in the interval [0, N].

We distinguish the arriving customers by the type according to the node at which a customer
appears. Namely, a type-k customer arrives at the k-th node of the network, k = 1, K. The notations
like k = 1, K mean that the integer parameter k admits the values in the range {1, . . . , K}. The arrival
process is assumed to be defined by the MMAP (Marked Markovian Arrival Process), see [15,16].
The possible customer’s arrival moments in the MMAP coincide with the moments of the jumps of an
irreducible continuous-time Markov chain νt, t ≥ 0, with a finite state space {1, 2, ..., W}. This chain is
called as the underlying process of the MMAP. The MMAP is defined by the set of square matrices
D0, Dk, k = 1, K, of size W. The transition intensities of the chain νt, which are accompanied by
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an arrival of a type-k customer, k = 1, K, are defined by the entries of the matrix Dk. The matrix

D(1) =
K
∑

k=0
Dk is the infinitesimal generator of the Markov chain νt.

Formulas for computing such characteristics of the MMAP as the average intensity of customer
arrival (fundamental rate) λ, the average intensity λk of the arrival of type-k customers, the squared
coefficient of variation cvar and the coefficient of correlation ccor of two successive intervals between
arrivals can be found, e.g., in [15,17]. The main advantages of the MMAP over the stationary
Poisson arrival process are its abilities to catch, besides the average arrival rate, possible variation
of instantaneous arrival rates, different variance of inter-arrival times and their dependence.
In application of the theoretical results obtained for the systems with the MMAP to analysis of concrete
systems, it is necessary to construct the set of matrices D0, Dk, k = 1, K, which define the MMAP,
based on observation of the traces of the flow in the concrete system. In particular, coincidence of the
mean arrival rates of the real flow with the rates of the constructed MMAP as well as of coefficients of
variation and correlation is required. The problem of constructing the matrices D0, Dk, k = 1, K, is not
easy. However, this problem is already well addressed in the existing literature, see, e.g., [18,19].

An illustration of the distribution of arriving customers among the nodes is given in Figure 1.
The circles within the nodes show the currently available servers at the nodes of the network. In this
particular figure, node 2 does not have free servers at the given moment.

node 1

node 2

...

node 3

node K

MMAP

Figure 1. Scheme of arriving customers distribution in the queueing network under study.

If an arriving type-k customer does not meet idle servers at node k, the customer leaves the
network permanently. If a customer arrives at node k when there are n free servers in this node,
he/she starts service at one of the free servers with probability hn,k or balks with the complementary
probability (e.g., due to the long walking distance to the nearest car). The service time of a customer
has an exponential distribution with the parameter µ. During the service of a customer, the server
is temporarily cancelled from the list of the available servers in the network. After the service time
expires, the serviced customer leaves the network permanently while the server becomes available in

the k-th node, k = 1, K, with the probability qk,
K
∑

k=1
qk = 1.

For reader convenience, we summarise the main notation that characterizes the system in Table 1.
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Table 1. Notation.

K the number of nodes (zones)

N the total number of servers (cars)

W the number of states of the underlying process of the MMAP (marked Markovian
arrival process) arrival flow of customers

Dk, k = 0, K, the square matrices of size W that characterize the MMAP arrival flow of customers

λ the average arrival intensity of customers

λk, k = 1, K, the average arrival intensity of type-k customers

µ the parameter of exponential distribution of the service time

hn,k
the probability that an arriving customer starts service at one of the free servers if
he/she arrives at node k when there are n free servers in this node

H the matrix H = (hn,k)n=1,N, k=1,K , of size N × K consisting of the probabilities hn,k

qk
the probability that after service completion a server becomes available in the k-th
node, k = 1, K

q the vector consisting of the probabilities (q1, . . . , qK)

I the identity matrix

O a zero matrix

⊗ the symbol of the Kronecker product of matrices, see [20]

diag{. . . } the diagonal matrix with the diagonal entries defined by the entries of the vector
given in the brackets

e the column vector (1, . . . , 1)T of an appropriate size

0 a zero row vector of an appropriate size

H̃k
the matrix of size N × K with all zero entries except the k-th column, whose entries
are equal to the corresponding entries of the k-th column of the matrix H.

In the next sections, we analyse the described queueing network. In Section 3, we construct
a multi-dimensional continuous-time Markov chain that describes the operation of this queueing
network. Usually, there exist many ways for construction of such a chain and it is necessary to find
a way leading to the good structure of the generator of the chain and the minimally possible size of
the blocks of the generator. The generator of the constructed Markov chain is presented and a brief
explanation of the intuitive meaning of its blocks is given. After derivation of the explicit expressions
for the generator and its blocks, we briefly touch the problem of computation of the stationary
distribution of the Markov chain. In Section 4, we present the expressions for the key performance
indicators of the network, including the availability of the servers at each node. Then, illustrative
numerical examples are presented in Section 5.

3. Process of the Network States

It is easy to see that the operation of the queueing network under study can be described in terms
of the following multi-dimensional continuous-time Markov chain

ξt = {nt, νt, n(1)
t , . . . , n(K)

t }, t ≥ 0,

where, at the moment t, t ≥ 0,

• nt is the number of free servers in the network, nt = 0, N;
• νt is the state of the underlying process of the MMAP, νt = 1, W;
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• n(k)
t is the number of free servers in the k-th node, k = 1, K, n(k)

t = 0, nt,
K
∑

k=1
n(k)

t = nt,

which is regular and irreducible.
To analyse the Markov chain ξt, we will combine the states of the process ξt having the value n of

the component nt into the set of states called as the level n. Inside the level, we will enumerate the states
of the process ξt in the direct lexicographic order of the component νt and the reverse lexicographic
order of the components {n(1)

t , . . . , n(K)
t }. We denote Gn,n′ as the matrix consisting of the intensities of

transitions from the level n to the level n′ and G as the block matrix having the blocks Gn,n′ .
In derivation of the expressions for the blocks Gn,n′ , of the generator of the process ξt =

{nt, νt, n(1)
t , . . . , n(K)

t } defining the intensities of transition from the states, which belong to the level
n, to the states, which belong to the level n′, the most technically difficult step is the computation of
the matrices that define the transition probabilities of the components {n(1)

t , . . . , n(K)
t } at the moments

of service finishing and beginning. It can be verified that at the moments when
K
∑

k=1
n(k)

t = n the state

space of these components consists of Tn = (n+K−1
K−1 ) = (n+K−1)!

n!(K−1)! elements, n = 1, N. To implement this
step, we have proven the following two Lemmas.

Lemma 1. Let the matrices Cn = Cn(q), n = 0, N − 1 define the transition probabilities of the process
{n(1)

t , . . . , n(K)
t }, t ≥ 0, at the moment when service of a customer is finished and the number of free servers

was equal to n. These matrices can be found as C0 = q, Cn = C(K−2)
n , n = 1, N − 1, where the matrices C(k)

n

of block size (n + 1)× (n + 2) define the transition probabilities of the components n(K)
t , . . . , n(K−k−1)

t at the
moment of service completion when there are n free servers conditional on the fact that the server that finished
service becomes available in the node with the number from the set K, K − 1, . . . , K − k − 1, k = 0, K− 2.
These matrices can be computed by the recursion

C(0)
n =


qK−1 qK 0 · · · 0 0

0 qK−1 qK · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · qK−1 qK

 ,

C(k)
n =



qK−k−1 q̃(k) 0 0 · · · 0 0
0T qK−k−1 I C(k−1)

1 O · · · O O
0T O qK−k−1 I C(k−1)

2 · · · O O
...

...
...

...
. . .

...
...

0T O O O · · · qK−k−1 I C(k−1)
n


, k = 1, K− 2, n = 1, N − 1,

where q̃(k) = (qK−k, qK−k+1, . . . , qK), k = 1, K− 2.

Lemma 2. Let the matrices Sn = Sn(H), n = 1, N, define the transition probabilities of the process
{n(1)

t , . . . , n(K)
t } at the moment when a new customer arrives at the network when the number of free servers

is n and starts service. These matrices can be found as S1 = hT
1 where h1 is the first row of the matrix H and

Sn = S(K−2)
n , n = 2, N, where the matrices S(k)

n , n = 2, N, of block size (n + 1)× n define the transition
probabilities of the components n(K)

t , . . . , n(K−k−1)
t at the moment of customer acceptance to the network when
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there are n free servers conditional on the fact that the service starts at some node of the network from the set
K, K− 1, . . . , K− k− 1, k = 0, K− 2. These matrices can be computed by the recursion

S(0)
n =


hn,K−1 0 0 · · · 0 0

h1,K hn−1,K−1 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · hn−1,K h1,K−1

0 0 0 · · · 0 hn,K

 ,

S(k)
n =



hn,K−k−1 0 0 0 · · · 0 0
h̃(k) hn−1,K−k−1 I O O · · · O O
0T S(k−1)

2 hn−2,K−k−1 I O · · · O O
...

...
...

...
. . .

...
...

0T O O O · · · S(k−1)
n−1 h1,K−k−1 I

0T O O O · · · O S(k−1)
n


, k = 1, K− 2,

where h̃(k) = (h1,K−k, h1,K−k+1, . . . , h1,K)
T , k = 1, K− 2.

Proof of Lemmas 1 and 2 is implemented by induction taking into account the reverse
lexicographic order of components of the process {n(1)

t , . . . , n(K)
t }.

Using the results of these Lemmas, we can prove the following statement.

Theorem 1. The generator G of the Markov chain ξt, t ≥ 0, has the following block-tridiagonal (QBD)
structure:

G =


G0,0 G0,1 O . . . O O
G1,0 G1,1 G1,2 . . . O O

O G2,1 G2,2 . . . O O
...

...
...

. . .
...

...
O O O . . . GN,N−1 GN,N

 (1),

where
G0,0 = D(1)− µNIW , (2)

Gn,n = D0 ⊗ ITn − µ(N − n)IWTn +
K

∑
k=1

Dk ⊗ diag{eTn − Sn(H̃k)e}, n = 1, N, (3)

Gn,n+1 = µ(N − n)IW ⊗ Cn, n = 0, N − 1, (4)

Gn,n−1 =
K

∑
k=1

Dk ⊗ Sn(H̃k), n = 1, N. (5)

Proof of Theorem 1 is implemented by means of the analysis of all possible transitions of the
Markov chain during an interval of an infinitesimal length.

The generator G has a block-tridiagonal structure (1) (i.e., Gn,n′ = O if |n− n′| > 1) because the
probability that more than one customer arrives or departs from the network during an infinitesimally
small interval is negligible. The diagonal entries of the block G0,0 are negative. The modulus of
the corresponding entry of this block defines the rate of departure of the Markov chain ξt from the
corresponding state. Because 0 servers are idle, all N servers of the network provide service and the
total service completion rate is µN. Correspondingly, all arriving customers are rejected due to the
lack of free servers. The corresponding intensities of the departure of the underlying process of the
MMAP from its states are given by the diagonal entries of the matrix D(1). The non-diagonal entries
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of the block G0,0 are non-negative and define the intensities of the transition of the underlying process
of the MMAP between its states. As the results of these considerations, we obtain formula (2).

The derivation of formula (3) for the block Gn,n, n = 1, N is similar to the derivation of formula
(2) with accounting for the difference that now in the network there are n idle servers and an arriving
customer has a chance to start service. Therefore, because the block Gn,n only accounts for possible
transitions of the Markov chain ξt without the change of the number n of idle servers in the network,
we have to consider only the jumps of the underlying process of the MMAP without generation of
customers (the intensities of these jumps are given by the matrix D0) or with generation of customers
that are immediately lost due to the lack of available server or balking. The matrix Dk defines the
intensities of the jumps that are accompanied by a customer generation in node k. The diagonal matrix
diag{eTn − Sn(H̃k)e} has the diagonal entries equal to 1 at the rows that correspond to the states

(n(1), . . . , n(K)) of the process {n(1)
t , . . . , n(K)

t } such as n(k) = 0 and equal to the probability 1− hn,k
in all other rows. Thus, the matrix Dk ⊗ diag{eTn − Sn(H̃k)e} defines the intensities of transitions
without the change of the number of idle servers when the servers are available in the requested node.
The symbol ⊗ of Kronecker product of matrices is used here (and in the analysis of multi-dimensional
Markov chains in general) to describe simultaneous transitions of several independent Markov chains.

The derivation of formula (4) is clear because the block Gn,n+1, n = 0, N − 1, describes the

intensities of transitions of the process {n(1)
t , . . . , n(K)

t } from the level n to the level n + 1.
Such transitions occur when service in one of N − n busy servers is finished (the intensity of this event
occurrence is equal to µ(N − n)), and the server appears in a certain node. Transition probabilities
of the process {n(1)

t , . . . , n(K)
t }, t ≥ 0, at the moment when service of a customer is finished and the

number of free servers, was equal to n are defined by the matrix Cn described above.
In the derivation of formula (5) for the block Gn,n−1, n = 1, N, we account that the decrease

in the number of idle servers from n to n− 1 occurs when a new customer arrives in some node k
(the intensities of the corresponding transitions are given by the matrix Dk), in which the number of
idle servers is not equal to 0, and starts service. The corresponding intensities of transitions of the
process {n(1)

t , . . . , n(K)
t } are given by the matrix Sn(H̃k). Formula (5) and Theorem 1 are proved.

After computation of transition probabilities of the Markov chain, it is necessary to compute
steady-state (stationary) probabilities of the states of the chain.

Because the Markov chain ξt has a finite state space and its generator is irreducible, the following
limits (stationary probabilities)

π(n, ν, n(1), . . . , n(K)) = lim
t→∞

P{nt = n, νt = ν, n(1)
t = n(1), . . . , n(K)

t = n(K)}

exist for any set of the parameters of the system.
Denote by πn the row vector consisting of the stationary probabilities of the states of the Markov

chain that belong to the level n, n = 0, N, and are enumerated in correspondence with definition of
the level. The vectors πn, n = 0, N satisfy the following system of linear algebraic equations:

(π0, . . . , πN)G = 0, (π0, . . . , πN)e = 1.

The number of equations of this system may be large. Therefore, to solve this system, it is necessary
to use algorithms that effectively use the sparse block structure of the generator G. In particular,
the algorithm from [21] can be recommended. Note that often it is possible to skip the computation of
the stationary distribution of the Markov chain if only the values of some performance measures of the
network are of interest. This can be done via the use of a memory-efficient method developed in [22].

4. Performance Measures of the Network

As soon as the vectors πn, n = 0, N have been computed, we can determine various performance
measures of the queueing network under consideration.
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The average number of idle servers in the network is

Nidle =
N

∑
n=1

nπne.

The average number of busy servers in the network is

Nbusy = N − Nidle.

The average number of idle servers in the kth node is

N(k)
idle =

N

∑
n=1

πn(eW ⊗ Sn(Pk)eTn−1), k = 1, K,

where the matrix Pk of size N × K has all zero columns except the k-th column, which is equal to
(1, 2, . . . , N)T .

The probability P(k)
loss that an arbitrary customer arriving to the kth node will be lost is computed by

P(k)
loss =

1
λk

[
π0DkeW +

N

∑
n=1

πn

(
DkeW ⊗ (eTn − Sn(H̃k)eTn−1)

)]
, k = 1, K.

The probability P(k)
loss−no−car that an arbitrary customer arriving to the kth node will be lost because

there are no available cars in this node is computed by

P(k)
loss−no−car =

1
λk

[
π0DkeW +

N

∑
n=1

πn(DkeW ⊗ an,k)

]
, k = 1, K,

where an,k is the vector of size Tn, the lth entry of which is equal to 1 if the lth entry of the vector
Sn(H̃k)eTn−1 is equal to 0, l = 1, Tn, and is equal to 0, otherwise.

Availability of the kth node defined as the share of time, during which an arbitrary arriving
customer will meet an available car, is computed as 1− P(k)

loss−no−car, k = 1, K.

The value P(k)
loss − P(k)

loss−no−car is equal to the probability that an arbitrary customer arriving at
the kth zone will be lost in the situation when there are available cars in this node, but the customer
decides to cancel his/her journey (e.g., due to long walking distance between his/her current location
and the available car in this node).

The probability Ploss that an arbitrary customer arriving to the network will be lost is computed by

Ploss =
1
λ

[
π0

K

∑
k=1

DkeW +
N

∑
n=1

πn

K

∑
k=1

(
DkeW ⊗ (eTn − Sn(H̃k)eTn−1)

)]
.

The probability Ploss−no−car that an arbitrary customer arriving to the network will be lost because
there are no cars available is computed by

Ploss−no−car =
1
λ

[
π0

K

∑
k=1

DkeW +
N

∑
n=1

πn

K

∑
k=1

(DkeW ⊗ an,k)

]
.

Having analytical expressions for computation of performance characteristics of the system,
we can develop software for their computation and give some numerical illustrations.
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5. Numerical Results

In this paper, we built a novel model of a car sharing system as a queueing network with moving
servers. Analogous models are not known in the literature and, therefore, we have no opportunity to
compare our results with the existing in the literature. The single universal tool for testing the obtained
results is computer simulation. To check the correctness of our analysis, we made a simulation model,
and the results of simulation match our analytical results well.

The goals of the numerical experiment are: (i) to demonstrate the feasibility of the algorithms for
computation of the stationary distribution of the Markov chain with the generator defined in Theorem
1 and the performance measures presented in the previous sections; (ii) to evaluate the dependence of
the performance measures on the number N of servers (cars); and (iii) to show the necessity of account
of correlation in the arrival process for adequate modelling of a car sharing system.

Let us consider the town which can be geographically divided into three zones. The average
duration of the trip is 15 min. The information about the arriving flows of clients (customers) to each
zone, probabilities of trip completion in a certain zone, and probabilities of a customer balking in the
case when there are available cars is given below in the following description of the operation of this
car sharing system in terms of the queueing network.

The number of nodes of the network is K = 3. The service rate is µ = 1
15 = 0.066. The vector

q = (q1, . . . , qK) defining the probabilities qk that an arbitrary service finishes in the kth node, k = 1, K,
is given by q = (0.29, 0.45, 0.26). The probabilities hn,k that an arbitrary customer arriving to the
kth node when n servers are available in this node will start service (but not balk) are given by
hn,k = min{1, h̃k + 0.05(n− 1)}, where h̃1 = 0.7, h̃2 = 0.68, h̃3 = 0.75.

Because one of our goals is to show the importance of the account of correlation in the arrival
process, we consider the following two MMAPs.

The first arrival process, which we code as MMAP0, is the superposition of three stationary
Poisson processes with the intensities λ1 = 0.170747, λ2 = 0.270468, λ3 = 0.158861. The total rate
of customers arrival to the network is λ = 0.600076. The coefficient of correlation of successive
inter-arrival times in this arrival process is equal to 0.

The second arrival process, denoted as MMAP0.15, is defined by the matrices

D0 =

(
−1.8 0
0.0 −0.4458

)
, D1 =

(
0.51 0.05

0.006 0.1147

)
,

D2 =

(
0.31 0.01

0 0.2641

)
, D3 =

(
0.91 0.01

0.003 0.058

)
.

This arrival flow has the coefficient of correlation ccor = 0.1485, therefore we code it as
MMAP0.15. The total arrival rate and arrival rates to all nodes are the same as those for MMAP0.
Thus, two considered MMAPs have equal arrival rates to each node but different correlation of
successive inter-arrival times.

We evaluate the influence of the number N of servers operating within the network on some of
its performance measures. Figures 2–4 show the dependence of the number of busy servers Nbusy,
the probability Ploss and the probability Ploss−no−car on the number N servers in the network where the
parameters N varies from 1 to 100. For computations, we use a PC with an Intel Core i7-8700 CPU
(Santa Clara, CA, USA) and 16 GB RAM, Wolfram Mathematica (version 11, Wolfram, Champaign,
IL, USA).

The times required for computation of the stationary distribution of the Markov chain and the
listed performance measures for some values of N are given in Table 2.
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Table 2. Computation time (CT) for different N.

N 10 20 30 40 50
CT 0.064 s 0.51 s 2 s 6.3 s 18 s
N 60 70 80 90 100

CT 46 s m 1.68 m 3.18 m 5.9 m 10.3 m

It can be observed that the computation time essentially increases with the growth of N.
For N = 20, it is about half of a second. For N = 50, it is about 18 seconds. For N = 100, it is
about 10 min. This fast increase of the computation time is explained by the increase of the maximal
size of the blocks of the generator. In particular, the size of the block Gn,n is equal to W × Tn,
where Tn = (n+K−1

K−1 ) = (n+K−1)!
n!(K−1)! = (n+2)(n+1)

2 , n = 1, N. For N = 20, the size of the maximal block is
462. For N = 100, the size is already 10, 302. It is worth noting that the data in Table 1 are given for the
MMAP0.15 arrival flow. Computations for the MMAP0 arrival flow defined as the superposition of
three stationary Poisson processes are faster because the size of the blocks is twice as small (W = 1).

It is worth noting that, in this experiment, we computed not only the stationary distribution
and Nbusy, Ploss and Ploss−no−car, but also all other performance measures listed in the previous
section. To speed up computations, computation of some performance measures can be cancelled.
In addition, it is possible to use more advanced computers and the results of [22].
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Figure 2. Dependence of the average number of busy servers in the network on the number N.
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Figure 3. Dependence of the probability Ploss on the number N.
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Figure 4. Dependence of the probability Ploss−no−car on the number N.

Although we present the results of comparison of the results for the network with arrival flow
having a correlation equal to 0 with the results for the network with arrival flow having relatively
small correlation equal to 0.15, we can conclude that there is an essential difference in the values of
Nbusy, Ploss and Ploss−no−car. This leads to essential errors in the performance evaluation of the network
and choosing the required fleet size N if the real arrival flow is correlated, but someone models it by
the stationary Poisson process.

Likely, the most important performance measure of the network is the probability Ploss−no−car that
an arbitrary customer arriving at the network will be lost because there are no available cars. Let us
formulate the problem of designing the car sharing system. To estimate the necessary investments
into buying or leasing and maintenance of cars, we have to choose the number N of cars required
in the considered network. We have to make this choice taking into account that we would like to
obtain that the probability Ploss−no−car that an arbitrary arriving customer will see available cars is not
less than, say, 0.95. If we compute this required number N of cars in the assumption that the arrival
flow is the superposition of three stationary Poisson processes, we obtain that N = 27 cars are enough.
However, if statistics will show that the arrival flow is correlated with the coefficient of correlation
0.15, we have to account for this correlation and make computations using MMAP0.15 as the model
of the arrival process. After these computations, we obtain that the required number N is equal to
68. This is 2.5 times larger than 27. Therefore, if we choose N = 27 and plan availability of cars in
95 percent of cases, we have a lack of 41 cars that are indeed additionally required. The necessity of
these additional investments into the development of the car sharing system can essentially change
the estimation of reasonability of starting or holding this business.

Note that, for N = 100, the model with the arrival flow given by the superposition of
three stationary Poisson processes estimates the loss probability due to unavailability of cars as
0.0098. However, for the correlated flow MMAP0.15, this probability is about 3.34 times higher (it is
equal to 0.0327917). Therefore, it is necessary to account for even a relatively small correlation of
inter-arrival times.

In the previous examples, we considered the integral characteristics of the whole network. Let us
consider now the characteristics of each node. Let us first consider the case when the arrival flow is
MMAP0.15. Figures 5–7 show the dependencies of the number N(k)

idle of idle servers, the probability P(k)
loss

that an arbitrary customer arriving at the kth node will be lost and the probability P(k)
loss−no−car that an

arbitrary customer arriving at the kth node will be lost because there are no available cars in this node
on the number N.
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the case MMAP0.15.
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First of all, it is worth noting the good matching of Figures 2 and 5. For example, for any N,
the sum of values N(k)

idle given in Figure 5 by k, k = 1, 2, 3 is equal to the total number of idle servers
Nidle in the network, which, in turn, is equal to 1− Nbusy where Nbusy is given in Figure 2. Another
observation is the following. Nodes 1 and 3 have very similar parameters (arrival rate, probability
to finish service in this node). However, it is seen from Figures 6 and 7 that the loss probability in
node 1 is essentially smaller. Correspondingly, the number of the idle servers is also essentially smaller.
To explain this phenomenon, we additionally compute the coefficients of correlation of inter-arrival
times of customers in each node separately. The values of these coefficients of correlation are 0.15388,
0.0019, 0.28229, correspondingly. Therefore, correlation in the flow of customers arriving at node 3
is almost double that of correlation in the flow of customers arriving at node 1. It is already known
from the literature that the increase of correlation in the arrival flow to a queueing system leads to
a higher value of the loss probability. Because correlation in the arrival process to node 2 is smaller
than in the arrival processes to nodes 1 and 3, we could expect that the value of N(2)

idle is less than N(1)
idle

and N(3)
idle. However, this expectation contradicts Figure 5. Namely, we observe that N(2)

idle > N(1)
idle for

relatively large values of N. This fact becomes clear if we recall that the probability of transition of an
arbitrary server at the moment of service completion to node 2 is equal to 0.45 while the corresponding
probability for node 1 is only 0.29. Therefore, the number of servers arriving per unit of time to node 2
is essentially larger. This causes a larger number of idle servers in node 2.

The effect of the intersection of the curves for k = 1 and k = 2 on Figure 5 can be explained
by correlation in the arrival process. If we consider the non-correlated arrival process MMAP0,
this intersection disappears, see Figure 8 below.

Figures 8–10 illustrate the same dependencies as given in Figures 5–7, but for the MMAP0

arrival process.
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Figure 8. Dependence of the average number N(k)
idle of idle servers in the kth node on the number N for

the case MMAP0.
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Figure 9. Dependence of the probability P(k)
loss that an arbitrary customer arriving to the kth node will

be lost on the number N for the case MMAP0.
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Figure 10. Dependence of the probability P(k)
loss−no−car that an arbitrary customer arriving to the kth

node will be lost because there are no available cars in this node on the number N for the case MMAP0.

Comparison of Figures 8–10 with Figures 5–7 confirms our conclusion made above that correlation
has an essential impact on the performance measures of the network. Larger correlation implies a
higher value of the loss probability and a larger number of idle servers. The approximation of
a real-world arrival process with positive correlation by the stationary Poisson process leads to
underestimation of the loss probability and too optimistic prediction of the network performance
measures. Individual performance measures of the nodes also drastically change depending on
correlation in the arrival process. For example, for N = 100, the maximal value of N(k)

idle is achieved in

node 1 (about 43) and the minimal value of N(k)
idle is achieved in node 3 (about 20) in the case MMAP0.

At the same time, the maximal value of N(k)
idle is achieved in node 3 (about 35) and the minimal value of

N(k)
idle is achieved in node 1 (about 24) in the case MMAP0.15.

Therefore, correlation in the arrival process has a profound effect and only the use of our results
allows for exactly computing performance measures of the network under the fixed values of its
parameters, including the pattern of arrival process.
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6. Conclusions

We consider a problem of the choice of the number of required cars (fleet management problem)
in a car sharing system and performance evaluation of this system under any fixed set of its parameters.
We construct the mathematical model of car sharing as an open queueing network. The dynamics of this
network are described by a multi-dimensional continuous-time Markov chain. We derive the generator
of this chain and expressions for the main performance measures of the network. Presented results of
numerical experiments illustrate the dependence of some performance measures of the network and
nodes of this network on the number of available servers (cars). The importance of the accounting of
possible correlation in the arrival process is numerically shown. Results can be used for the optimal
choice of the number of required cars with respect to various criteria, e.g., the loss probability of an
arbitrary customer, availability of servers, the idle time of a car, profit from the operation, etc.
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