Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ:
https://elib.bsu.by/handle/123456789/261151
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Doubrov, B. | - |
dc.contributor.author | Ferapontov, E.V. | - |
dc.contributor.author | Kruglikov, B. | - |
dc.contributor.author | Novikov, V.S. | - |
dc.date.accessioned | 2021-06-08T07:41:58Z | - |
dc.date.available | 2021-06-08T07:41:58Z | - |
dc.date.issued | 2019 | - |
dc.identifier.citation | Int Math Res Not 2019;2019(21). | ru |
dc.identifier.uri | https://elib.bsu.by/handle/123456789/261151 | - |
dc.description.abstract | Let Gr(d, n) be the Grassmannian of d-dimensional linear subspaces of an n-dimensional vector space V. A submanifold X Gr(d, n) gives rise to a differential system ς(X) that governs d-dimensional submanifolds of V whose Gaussian image is contained in X. We investigate a special case of this construction where X is a six-fold in Gr(4, 6). The corresponding system ς(X) reduces to a pair of first-order PDEs for 2 functions of 4 independent variables. Equations of this type arise in self-dual Ricci-flat geometry. Our main result is a complete description of integrable systems ς(X). These naturally fall into two subclasses. Systems of Monge-Ampère type. The corresponding six-folds X are codimension 2 linear sections of the Plücker embedding Gr(4, 6)→P14. General linearly degenerate systems. The corresponding six-folds X are the images of quadratic mapsP6 → Gr(4, 6) given by a version of the classical construction of Chasles. We prove that integrability is equivalent to the requirement that the characteristic variety of system ς(X) gives rise to a conformal structure which is self-dual on every solution. In fact, all solutions carry hyper-Hermitian geometry. | ru |
dc.description.sponsorship | Engineering and Physical Sciences Research Council (EPSRC),EP/N031369/1. This work was partially supported by Engineering and Physical Sciences Research Council [grant | ru |
dc.language.iso | en | ru |
dc.publisher | Oxford University Press | ru |
dc.subject | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика | ru |
dc.title | Integrable Systems in Four Dimensions Associated with Six-Folds in Gr(4, 6) | ru |
dc.type | article | ru |
dc.rights.license | CC BY 4.0 | ru |
dc.identifier.DOI | 10.1093/imrn/rnx308 | - |
dc.identifier.scopus | 85046058887 | - |
Располагается в коллекциях: | Статьи факультета прикладной математики и информатики |
Полный текст документа:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
4D_DFKN.pdf | 779,45 kB | Adobe PDF | Открыть |
Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.