Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/261151
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorDoubrov, B.-
dc.contributor.authorFerapontov, E.V.-
dc.contributor.authorKruglikov, B.-
dc.contributor.authorNovikov, V.S.-
dc.date.accessioned2021-06-08T07:41:58Z-
dc.date.available2021-06-08T07:41:58Z-
dc.date.issued2019-
dc.identifier.citationInt Math Res Not 2019;2019(21).ru
dc.identifier.urihttps://elib.bsu.by/handle/123456789/261151-
dc.description.abstractLet Gr(d, n) be the Grassmannian of d-dimensional linear subspaces of an n-dimensional vector space V. A submanifold X Gr(d, n) gives rise to a differential system ς(X) that governs d-dimensional submanifolds of V whose Gaussian image is contained in X. We investigate a special case of this construction where X is a six-fold in Gr(4, 6). The corresponding system ς(X) reduces to a pair of first-order PDEs for 2 functions of 4 independent variables. Equations of this type arise in self-dual Ricci-flat geometry. Our main result is a complete description of integrable systems ς(X). These naturally fall into two subclasses. Systems of Monge-Ampère type. The corresponding six-folds X are codimension 2 linear sections of the Plücker embedding Gr(4, 6)→P14. General linearly degenerate systems. The corresponding six-folds X are the images of quadratic mapsP6 → Gr(4, 6) given by a version of the classical construction of Chasles. We prove that integrability is equivalent to the requirement that the characteristic variety of system ς(X) gives rise to a conformal structure which is self-dual on every solution. In fact, all solutions carry hyper-Hermitian geometry.ru
dc.description.sponsorshipEngineering and Physical Sciences Research Council (EPSRC),EP/N031369/1. This work was partially supported by Engineering and Physical Sciences Research Council [grantru
dc.language.isoenru
dc.publisherOxford University Pressru
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математикаru
dc.titleIntegrable Systems in Four Dimensions Associated with Six-Folds in Gr(4, 6)ru
dc.typearticleru
dc.rights.licenseCC BY 4.0ru
dc.identifier.DOI10.1093/imrn/rnx308-
dc.identifier.scopus85046058887-
Располагается в коллекциях:Статьи факультета прикладной математики и информатики

Полный текст документа:
Файл Описание РазмерФормат 
4D_DFKN.pdf779,45 kBAdobe PDFОткрыть
Показать базовое описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.