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Abstract

Let Gr(d, n) be the Grassmannian of d-dimensional linear subspaces of an n-dimensional
vector space V . A submanifold X ⇢ Gr(d, n) gives rise to a di↵erential system ⌃(X) that
governs d-dimensional submanifolds of V whose Gaussian image is contained in X. We inves-
tigate a special case of this construction where X is a sixfold in Gr(4, 6). The corresponding
system ⌃(X) reduces to a pair of first-order PDEs for 2 functions of 4 independent variables.
Equations of this type arise in self-dual Ricci-flat geometry. Our main result is a complete
description of integrable systems ⌃(X). These naturally fall into two subclasses.

• Systems of Monge-Ampère type. The corresponding sixfoldsX are codimension 2 linear
sections of the Plücker embedding Gr(4, 6) ,! P

14.

• General linearly degenerate systems. The corresponding sixfolds X are the images
of quadratic maps P

6 99K Gr(4, 6) given by a version of the classical construction of
Chasles.

We prove that integrability is equivalent to the requirement that the characteristic variety
of system ⌃(X) gives rise to a conformal structure which is self-dual on every solution. In
fact, all solutions carry hyper-Hermitian geometry.

MSC: 37K10, 37K25, 53A30, 53A40, 53B15, 53B25, 53B50, 53Z05.

Keywords: Submanifold of the Grassmannian, Dispersionless Integrable System, Hydro-
dynamic Reduction, Self-dual Conformal Structure, Monge-Ampère System, Dispersionless
Lax Pair, Linear Degeneracy.
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1 Introduction

1.1 Formulation of the problem

Let u(x) and v(x) be functions of the 4 independent variables x = (x1, . . . , x4). In this paper
we investigate integrability of first-order systems of the form

F (u1, . . . , u4, v1, . . . , v4) = 0, H(u1, . . . , u4, v1, . . . , v4) = 0, (1)

where F and H are (nonlinear) functions of the partial derivatives u
i

= @u

@x

i , v
i

= @v

@x

i . The
geometry behind systems (1) is as follows. Let V be a 6-dimensional vector space with coor-
dinates x1, . . . , x4, u, v. Solutions to system (1) correspond to 4-dimensional submanifolds of V
defined as u = u(x), v = v(x). Their 4-dimensional tangent spaces, specified by the equations
du = u

i

dxi, dv = v
i

dxi, are parametrised by 2⇥ 4 matrices

U =

✓
u1 . . . u4
v1 . . . v4

◆
,

whose entries are restricted by equations (1). Thus, equations (1) can be interpreted as the
defining equations of a sixfold X in the Grassmannian Gr(4, 6). Solutions to system (1) corre-
spond to 4-dimensional submanifolds of V whose Gaussian images (tangent spaces translated to
the origin) are contained in X. There exist two types of integrable systems (1).

Systems of Monge-Ampère type have the form

aij(u
i

v
j

� u
j

v
i

) + biu
i

+ civ
i

+m = 0,
↵ij(u

i

v
j

� u
j

v
i

) + �iu
i

+ �iv
i

+ µ = 0,
(2)

where each equation is a constant-coe�cient linear combination of the minors of U . These
systems were introduced in [2] in the context of ‘complete exceptionality’. Geometrically, the
associated sixfolds X are linear sections of the Plücker embedding Gr(4, 6) ,! P

14. A typical
example is the system

u2 � v1 = 0, u3v4 � u4v3 � 1 = 0, (3)

which reduces to the first heavenly equation of Plebanski [24], w13w24 � w14w23 � 1 = 0, under
the substitution w1 = u, w2 = v. It governs self-dual Ricci-flat 4-manifolds; see Section 2.1 for
further details on Monge-Ampère systems.

General linearly degenerate systems correspond to sixfoldsX resulting as images of quadratic
maps P

6 99K Gr(4, 6) (we refer to [7] for a discussion of the concept of linear degeneracy, see
also Section 1.5). As an example, let us consider the system

↵u2v1 � u1v2 = 0, u4v1 � u1v3 = 0,

↵ 6= 0, 1 is a parameter. Note that this system does not belong to the Monge-Ampère class (2).
The elimination of v leads to the second-order equation for u,

(@3 � @4)
u2
u1

= (↵�1 � 1)@2
u4
u1

,

here @
i

= @
x

i . Similarly, the elimination of u leads to the second-order equation for v,

(@4 � @3)
v2
v1

= (↵� 1)@2
v3
v1

.
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Thus, one can speak of a four-dimensional Bäcklund transformation. This example can be
viewed as a 4D generalisation of the Bäcklund transformation for the Veronese web equation
constructed in [28]. We refer to Section 2.3 for further examples and classification results.

The main goal of this paper is to prove that systems of the above two types exhaust the list
of non-degenerate integrable systems (1).

1.2 Non-degeneracy, conformal structure and self-duality

We will assume that system (1) is non-degenerate in the sense that the corresponding charac-
teristic variety,

det

"
4X

i=1

p
i

✓
F
ui F

vi

H
ui H

vi

◆#
= 0,

defines an irreducible quadric of rank 4. This is the case for all examples of physical/geometric
relevance. Explicitly, the characteristic variety can be represented in the form gijp

i

p
j

= 0 where

gij =
1

2
(F

uiHvj + F
ujHvi � F

viHuj � F
vjHui).

The characteristic variety gives rise to the conformal structure g = g
ij

dxidxj where g
ij

is the
inverse matrix of gij ; note that non-degeneracy is equivalent to det g 6= 0. Let [g] denote the
corresponding conformal class. Remarkably, integrability of system (1) has a natural interpreta-
tion in terms of the conformal geometry of [g]. In 4D, the key invariant of a conformal structure
is its Weyl tensor W . It has self-dual and anti-self-dual parts,

W+ =
1

2
(W + ⇤W ) and W� =

1

2
(W � ⇤W ),

respectively. Here the Hodge star operator is defined as ⇤W i

jkl

= 1
2

p
det g giagbc✏

ajbd

W d

ckl

. A
conformal structure is said to be self-dual if, with a proper choice of orientation, we have

W� = 0. (4)

The integrability of conditions of self-duality by the twistor construction is due to Penrose [23],
see also [10] for a direct demonstration. We will prove in Section 3 that integrability of 4D
equations (1) is equivalent to the requirement that the conformal structure [g] defined by the
characteristic variety must be self-dual on every solution. Thus, solutions to integrable systems

carry integrable conformal geometry. More precisely, with a suitable choice of orientation, it will
be shown that the conditions of self-duality, W� = 0, lead to Monge-Ampère systems. Similarly,
the conditions of anti-self-duality, W+ = 0, characterise general linearly degenerate systems
associated with quadratic maps P

6 99K Gr(4, 6). The intersection of these two classes consists
of linearisable systems characterised by the conformal flatness of g.

For example, the conformal structure of system (3) is given by

g = u3dx
1dx3 + u4dx

1dx4 + v3dx
2dx3 + v4dx

2dx4.

A direct calculation shows that [g] is self-dual on every solution, which means that (4) holds
identically modulo (3). System (3) possesses the Lax representation [X,Y ] = 0 where X,Y are
parameter-dependent vector fields,

X = u3@4 � u4@3 + �@1, Y = �v3@4 + v4@3 � �@2,
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@
i

= @
x

i . Projecting integral surfaces of the distribution spanned by X,Y from the extended
space of variables x,� (correspondence space) to the space of independent variables x one obtains
a three-parameter family of totally null surfaces (↵-surfaces) of the conformal structure [g].
According to [23], the existence of such surfaces is necessary and su�cient for self-duality. We
refer to [1, 20, 21] for a novel version of the inverse scattering transform based on commuting
parameter-dependent vector fields.

1.3 Dispersionless integrability in 4D

Integrability of multi-dimensional dispersionless PDEs can be approached based on the method
of hydrodynamic reductions [17, 12, 11, 13]. In the most general set-up (for definiteness, we
restrict to the 4D case), it applies to quasilinear systems of the form

A1(u)u1 +A2(u)u2 +A3(u)u3 +A4(u)u4 = 0, (5)

where u = (u1, ..., um)t is an m-component column vector of the dependent variables, u
i

= @u
@x

i ,
and A

i

are l⇥m matrices where the number l of equations is allowed to exceed the number m of
unknowns. Note that nonlinear system (1) can be brought to quasilinear form (5) by choosing
u
i

, v
i

as the new dependent variables and writing out all possible consistency conditions among
them, see Section 3. The method of hydrodynamic reductions consists of seeking multi-phase
solutions in the form

u = u(R1, ..., RN )

where the phases Ri(x), whose number N is allowed to be arbitrary, are required to satisfy a
triple of consistent (1 + 1)-dimensional systems

Ri

x

2 = µi(R)Ri

x

1 , Ri

x

3 = ⌘i(R)Ri

x

1 , Ri

x

4 = �i(R)Ri

x

1 , (6)

known as systems of hydrodynamic type. The corresponding characteristic speeds must satisfy
the commutativity conditions [27],

@
j

µi

µj � µi

=
@
j

⌘i

⌘j � ⌘i
=

@
j

�i

�j � �i

, (7)

here i 6= j, @
j

= @
R

j . Multi-phase solutions of this type originate from gas dynamics, and
are known as nonlinear interactions of planar simple waves. Equations (6) are said to define
an N -component hydrodynamic reduction of the original system (5). System (5) is said to be
integrable if, for every N , it possesses infinitely many N -component hydrodynamic reductions
parametrised by 2N arbitrary functions of one variable [13]. This requirement imposes strong
constraints (integrability conditions) on the matrix elements of A

i

(u), see Section 3 for details.
The method of hydrodynamic reductions has been successfully applied to a whole range of

systems in 3D, leading to extensive classification results. The corresponding submanifolds X
are generally transcendental, parametrised by generalised hypergeometric functions [22]. The
results of this paper are based on a direct application of the method of hydrodynamic reductions
to 4D systems of type (1). The 4D situation turns out to be far more restrictive, in particular,
the integrability conditions force X to be algebraic.
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1.4 Equivalence group SL(6)

All constructions described in the previous sections are equivariant with respect to the group
SL(6) acting by linear transformations on the space V with coordinates x1, . . . , x4, u, v. The
extension of this action to Gr(4, 6) is given by the formula

U ! (AU +B)(CU +D)�1 (8)

where A,B,C,D are 2⇥ 2, 2⇥ 4, 4⇥ 2 and 4⇥ 4 matrices, respectively; note that the extended
action is no longer linear. Transformation law (8) suggests that the action of SL(6) preserves
the class of equations (1). Furthermore, transformations (8) preserve the integrability, so that
SL(6) can be viewed as a natural equivalence group of the problem: all our classification results
will be formulated modulo this equivalence. In coordinates u

i

, v
i

, the infinitesimal generators
corresponding to equivalence transformations (8) are as follows:

8 translations:

U

i

=
@

@u
i

, V

i

=
@

@v
i

,

19 linear generators (note the relation

P
X

ii

= L11 + L22):

X

ij

= u
i

@

@u
j

+ v
i

@

@v
j

, L11 = u
k

@

@u
k

, L12 = u
k

@

@v
k

, L21 = v
k

@

@u
k

, L22 = v
k

@

@v
k

.

8 projective generators:

P

i

= u
i

u
k

@

@u
k

+ v
i

u
k

@

@v
k

, Q

i

= u
i

v
k

@

@u
k

+ v
i

v
k

@

@v
k

.

Let us represent system (1) in evolutionary form,

u4 = f(u1, u2, u3, v1, v2, v3), v4 = h(u1, u2, u3, v1, v2, v3), (9)

and consider the induced action of the equivalence group SL(6) on the space J1(R6,R2) of 1-jets
of functions f, h of variables u1, u2, u3, v1, v2, v3. This is a 20-dimensional space with coordinates
u
i

, v
i

, f, h, f
ui , fvi , hui , hvi , i = 1, 2, 3. One can show that the action of SL(6) on J1(R6,R2) has a

unique Zariski open orbit (its complement consists of 1-jets of degenerate systems), see Section
3.1. This property allows one to assume that all sporadic factors depending on first-order
derivatives of f and h that arise in the process of Gaussian elimination in the proofs of our main
results in Section 3, are nonzero. This considerably simplifies the arguments by eliminating
unessential branching. Furthermore, in the verification of polynomial identities involving first-
and second-order partial derivatives of f and h one can, without any loss of generality, give the
first-order derivatives any ‘generic’ numerical values: this often renders otherwise impossible
computations manageable.

1.5 Linearly degenerate systems

The definition of linear degeneracy is inductive: a multi-dimensional system is said to be lin-

early degenerate (completely exceptional [2]) if such are all its traveling wave reductions to two
dimensions. Thus, it is su�cient to define this concept in the 2D case,

u2 = f(u1, v1), v2 = h(u1, v1).
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Setting u1 = a, v1 = p and di↵erentiating by x1 one can rewrite this system in two-component
quasilinear form,

a2 = f(a, p)1, p2 = h(a, p)1,

or, in matrix notation,
✓

a
p

◆

2

= A

✓
a
p

◆

1

, A =

✓
f
a

f
p

h
a

h
p

◆
.

Recall that the matrix A is said to be linearly degenerate if its eigenvalues (assumed real and
distinct) are constant in the direction of the corresponding eigenvectors. Explicitly, L

r

i�i = 0,
no summation, where L

r

i denotes Lie derivative in the direction of the eigenvector ri, and
Ari = �iri. For quasilinear systems, the property of linear degeneracy is known to be related
to the impossibility of breakdown of smooth initial data [25]. In terms of the original functions
f(u1, v1) and h(u1, v1), the conditions of linear degeneracy reduce to a pair of second-order
di↵erential constraints [7],

(f
u1 � h

v1)fu1u1 + 2h
u1fu1v1 + h

u1hv1v1 + f
v1hu1u1 = 0,

(h
v1 � f

u1)hv1v1 + 2f
v1hu1v1 + f

v1fu1u1 + h
u1fv1v1 = 0.

Requiring that all traveling wave reductions of a multi-dimensional system to 2D are linearly
degenerate in the above sense, we obtain di↵erential characterisation of linear degeneracy:

Proposition 1 [7]. System (9) is linearly degenerate if and only if the functions f and h satisfy
the relations

Sym{i,j,k}
�
(f

uk � h
vk)fuiuj + h

uk(fuivj + f
ujvi) + f

vkhuiuj + h
ukhvivj

�
= 0,

Sym{i,j,k}
�
(h

vk � f
uk)hvivj + f

vk(huivj + h
ujvi) + h

ukfvivj + f
vkfuiuj

�
= 0,

(10)

where Sym denotes complete symmetrisation over i, j, k 2 {1, 2, 3}. Note that conditions (10)
are invariant under the equivalence group SL(6).

The key observation is that second-order overdetermined system (10) is not in involution:
its di↵erential prolongation results in the two branches characterised by additional second-order
di↵erential constraints. The first branch leads to Monge-Ampère systems (10 additional second-
order constraints). The second branch corresponds to general linearly degenerate systems (4
additional second-order constraints), see Section 3.2 for the details of this analysis.

1.6 Summary of the main results

Our results imply that several seemingly di↵erent approaches to integrability described above
lead to one and the same class of systems (1).

Theorem 1 Under the non-degeneracy assumption, the following conditions are equivalent:

(a) System (1) is integrable by the method of hydrodynamic reductions.

(b) Conformal structure [g] defined by the characteristic variety of system (1) is self-dual on

every solution.

(c) System (1) is linearly degenerate.

(d) The associated sixfold X ⇢ Gr(4, 6) is either a codimension two linear section of the Plücker

embedding Gr(4, 6) ,! P

14
, or the image of a quadratic map P

6 99K Gr(4, 6).
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Theorem 1 and the results of [3] imply that any integrable system (1) possesses a Lax
representation in parameter-dependent commuting vector fields. Integral surfaces of these vector
fields give rise to ↵-surfaces of the conformal structure [g].

Examples of integrable systems (1) are discussed in Section 2. The proof of Theorem 1 is
given in Section 3. All calculations are based on computer algebra systems Mathematica and
Maple (these only utilise symbolic polynomial algebra over Q, so the results are rigorous). The
programmes are available from the arXiv supplement to this paper.

2 Examples and classification results

In this section we discuss examples of 4D systems which, as will be demonstrated in Section 3,
exhaust the list of all integrable systems of type (1).

2.1 Monge-Ampère systems

Systems of Monge-Ampère type correspond to sixfolds X ⇢ Gr(4, 6) that can be obtained as
codimension two linear sections of the Plücker embedding of the Grassmannian. Recall that
Gr(4, 6) is an 8-dimensional algebraic variety of degree 14 embedded into P

14. All 2-component
systems of Monge-Ampère type are integrable. They were classified in our recent paper [8].

Proposition 2 [8]. In four dimensions, any non-degenerate system of Monge-Ampère type is

SL(6)-equivalent to one of the following normal forms:

1. u2 � v1 = 0, u3 + v4 = 0,

2. u2 � v1 = 0, u3 + v4 + u1v2 � u2v1 = 0,

3. u2 � v1 = 0, u3v4 � u4v3 � 1 = 0,

4. u2 � v1 = 0, u1 + v2 + u3v4 � u4v3 = 0.

All these systems can be reduced to various heavenly-type equations. Introducing the poten-
tial w such that w1 = u, w2 = v one obtains the linear ultrahyperbolic equation w13 +w24 = 0,
the second heavenly equation w13 + w24 + w11w22 � w2

12 = 0 [24], the first heavenly equation
w13w24 � w14w23 � 1 = 0 [24], and the Husain equation w11 + w22 + w13w24 � w14w23 = 0 [18],
respectively. All of them originate from self-dual Ricci-flat geometry. Their integrability by the
method of hydrodynamic reductions was established in [12, 13].

Representing system (1) in evolutionary form (9) one obtains a di↵erential characterisation
of the Monge-Ampère property.

Proposition 3 [8]. The necessary and su�cient conditions for system (9) to be of Monge-

Ampère type are equivalent to the following second-order relations for f and h,

f
uiui =

2hui
hvi�fui

f
uivi , f

vivi =
2fvi

fui�hvi
f
uivi ,

f
uiuj =

huj

hvi�fui
f
uivi +

hui
hvj�fuj

f
ujvj , f

vivj =
fvj

fui�hvi
f
uivi +

fvi
fuj�hvj

f
ujvj ,

f
uivj + f

ujvi =
fuj�hvj

fui�hvi
f
uivi +

fui�hvi
fuj�hvj

f
ujvj ,

(11)
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where i, j = 1, 2, 3. Equations for h can be obtained by the simultaneous substitution f $ h and

u $ v (30 second-order relations altogether).

Table 1 below contains the (Lie algebra) structure of the stabilisers of Monge-Ampère systems
under the action of the equivalence group SL(6) (note that di↵erent cases are distinguished by
the dimensions of the stabilisers).

Table 1: types of isotropy algebras s ⇢ sl6 of Monge-Ampère systems in 4D

System of equations dim(s) Levi decomposition of the algebra s

1: linear ultrahyperbolic s = s0 � s1 graded by r 2 z(gl2)
u2 � v1 = 0 13 s = (sl2 � gl2)n (R2 ⌦ R

3)
u3 + v4 = 0 s is self-normalizing
2: 2nd heavenly s = s0 � s1 � s2 graded by r 2 z(gl2)
u2 � v1 = 0 11 s = gl2 n ((R1 + R

3)n R

3)
u3 + v4 + u1v2 � u2v1 = 0 s is self-normalizing
3: 1st heavenly s = s0 � s1 graded by r 2 z(gl2)
u2 � v1 = 0 10 s = sl2 � (gl2 n R

3)
u3v4 � u4v3 � 1 = 0 s is not self-normalizing
4: Husain system semi-simple
u2 � v1 = 0 9 s = sl2 � sl(2,C)

R

u1 + v2 + u3v4 � u4v3 = 0 s is not self-normalizing

Notes:

(1) The factors R2,R3 are irreducible representations of the corresponding sl2 (same for the sl2
factor in gl2 = sl2 � R) in cases 1-3.
(2) Lie algebra structure of the nilradical R1+R

3
a

+R

3
b

of s in case 2: [R1,R3
a

] = R

3
b

, [R3
a

,R3
a

] = R

3
b

(sl2-equivariance fixes the brackets uniquely).
(3) We indicate real forms of the equations in the left-hand side. Since the classification is over
C, the corresponding complex forms should be taken, e.g. (slC2 )

�3 in case 4.
(4) Normalizers of s ⇢ sl6 in cases 3, 4 both have dimensions 11 (extension of the sl2 factor to
gl2 in case 3 and of s to the trace-free part of gl2 � gl(2,C)

R

in case 4).

2.2 Linearisable systems

In this section we characterise systems (1) which can be linearised by a transformation from the
equivalence group SL(6). Note that linearisable systems are necessarily of Monge-Ampère type.

Theorem 4. Under the non-degeneracy assumption, the following conditions are equivalent:

(a) System (1) is linearisable by a transformation from the equivalence group SL(6).
(b) System (1) is invariant under a 13-dimensional subgroup of SL(6).
(c) The characteristic variety of system (1) defines a conformal structure [g] which is flat on

every solution: W = 0.

Proof. Equivalence (a) () (b): Consider a non-degenerate linear system, say u2 � v1 =
0, u3+v4 = 0 (note that all non-degenerate linear systems of type (1) are SL(6)-equivalent). This
system is invariant under a 13-dimensional subgroup of SL(6) with the following infinitesimal

9



generators (we use the notations of Section 1.4):

U1, U4, V2, V3, U2 +V1, U3 �V4,
X11 +X22, X33 +X44, X14 �X23, X41 �X32,

X12 �X43 + L12, X21 �X34 + L21, X22 +X33 + L22.
(12)

This Lie algebra is isomorphic to the semi-direct product (V1⌦V2)o(gl2⇥sl2), where V1⌦V2 ' R

6

is the tensor product of the standard representation V1 of gl2 = sl2 �R, and the representation
V2 of sl2. Here gl2 (resp. sl2) acts on the first (resp. second) factor of V1 ⌦ V2.

To establish the converse, let G be the symmetry group of system (1). We can always assume
that the point o, specified by u

i

= v
i

= 0, belongs to the sixfold X ⇢ Gr(4, 6) corresponding
to our system. Let G

o

be the stabiliser of this point in G. Note that dimG � dimG
o

 6,
as G takes X to itself. The stabiliser P of the point o is spanned by infinitesimal generators
X

ij

, L

ij

, P

i

, Q

i

. Since the system is non-degenerate, we can bring it to a canonical form

u2 = v1 + o(u
i

, v
i

), u3 = �v4 + o(u
i

, v
i

). (13)

This form (together with the point o) is stabilised by 7 elements of P listed in the last two lines
of (12). Thus, dimG

o

 7 so that dimG  13. The equality holds only if dimG
o

= 7. However,
the generator X11 + X22 + X33 + X44 acts by non-trivial rescalings on terms of order 2 and
higher in (13). Hence, for dimG

o

= 7, all higher-order terms must vanish identically, leading to
a linear system.

Equivalence (a) () (c): Let us represent system (1) in evolutionary form (9) and take the
corresponding conformal structure [g]. Conformal flatness is equivalent to the vanishing of the
Weyl tensor

W
ijkl

= R
ijkl

� w
ik

g
jl

� w
jl

g
ik

+ w
jk

g
il

+ w
il

g
jk

= 0, (14)

where R
ijkl

= g
is

Rs

jkl

is the curvature tensor, w
ij

= 1
2Rij

� R

12gij is the Schouten tensor, R
ij

is the Ricci tensor, and R is the scalar curvature. Calculating (14) and using equations (9)
along with their di↵erential consequences to eliminate all higher-order partial derivatives of u
and v containing di↵erentiation by x4, we obtain expressions that have to vanish identically in
the remaining higher-order derivatives (no more than third-order derivatives are involved in this
calculation). In particular, equating to zero coe�cients at the remaining third-order derivatives
of u and v we obtain 34 second-order relations for f and h that contain 30 relations (11) governing
Monge-Ampère systems, plus 4 extra (more complicated) relations. The easiest way to finish
the proof is to note that according to Proposition 2 of Section 2.1, any 4D system of Monge-
Ampère type is SL(6)-equivalent to one of the four normal forms, and direct verification shows
that conformal structures defined by characteristic varieties of the last three (non-linearisable)
normal forms are not flat on generic solutions. Thus, the above 34 second-order relations are
nothing but the linearisability conditions. This finishes the proof of Proposition 4.

2.3 Systems associated with quadratic maps P

6 99K Gr(4, 6)

In this section we classify integrable systems (1) which correspond to sixfolds X ⇢ Gr(4, 6)
resulting as images of quadratic maps P

6 99K Gr(4, 6). These maps come from the following
geometric construction.

Consider two vector spaces V andW . Let A 2 Hom(W,V ) and B 2 Hom(W,V ) be two linear
maps. The collection of 2-planes Ax ^ Bx, x 2 W , defines a subvariety of Gr(2, V ), the image
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of a quadratic map P(W ) 99K Gr(2, V ). In the particular case V = W this construction goes
back to Chasles [4] who considered the locus of lines spanned by an argument and the value of a
projective transformation; see also [5], p. 556. Quadratic maps P6 99K Gr(2, 6) result from the
above construction when dimV = 6, dimW = 7. This gives a map P(W ) = P

6 99K Gr(2, V ),
leading by duality to a quadratic map P

6 99K Gr(4, V ⇤) = Gr(4, 6).
In coordinates, this reads as follows. Consider projective space P(W ) = P

6 with homogeneous
coordinates ⇠ = (⇠1 : ⇠2 : ⇠3 : ⇠4 : ⇠5 : ⇠6 : ⇠7). Let A and B be two 7⇥ 6 matrices representing
the corresponding linear maps. Introduce the 2⇥ 6 matrix of linear forms on W ,

✓
⌘1 ⌘2 ⌘3 ⌘4 ⌘5 ⌘6

⌧1 ⌧2 ⌧3 ⌧4 ⌧5 ⌧6

◆
,

where ⌘ = ⇠A and ⌧ = ⇠B. The Plücker coordinates pij = ⌘i⌧ j � ⌘j⌧ i define a quadratic map
P

6 99K Gr(2, 6) ⇢ P

14. By duality, this gives a sixfold X ⇢ Gr(4, 6), and the corresponding
system (1). Explicit parametric formulae can be obtained from the factorised representation,

✓
⌘1 ⌘2 ⌘3 ⌘4 ⌘5 ⌘6

⌧1 ⌧2 ⌧3 ⌧4 ⌧5 ⌧6

◆
=

✓
⌘5 ⌘6

⌧5 ⌧6

◆✓
u1 u2 u3 u4 1 0
v1 v2 v3 v4 0 1

◆
,

which gives u
i

= pi6/p56, v
i

= pi5/p65, i = 1, . . . , 4. Eliminating ⇠’s, we obtain two relations
among u

i

, v
i

, which constitute the required system ⌃(X).
Tables 2–6 below comprise a complete list of resulting systems (1) labelled by Jordan-

Kronecker normal forms [16] of the matrix pencil A,B (see the end of this section for an il-
lustrative calculation leading to the first case of Table 2). Note that A and B are defined up to
transformations A ! PAQ, B ! PBQ, where the 7 ⇥ 7 matrix P is responsible for a change
of basis in W and the 6⇥ 6 matrix Q corresponds to the action of the equivalence group SL(6).
Modulo these transformations, A and B must have exactly one Kronecker block of the size
(n+1)⇥n, for n = 2, . . . , 6 (the cases of a single 2⇥ 1 Kronecker block, as well as of more than
one Kronecker blocks, lead to either degenerate or linear systems). We group systems according
to the size of the Kronecker block. Within each table, systems are labelled by Serge types of the
remaining Jordan block. In all cases (with the exception of the most generic system from Table
6) we have chosen canonical forms which, via elimination of u, imply second-order equations
for v. We also present the associated dispersionless Lax pairs in the form of two commuting
�-dependent vector fields, [X,Y ] = 0.

Table 2: canonical forms with one 3⇥ 2 Kronecker block

Segre type Canonical form Equation for v Lax pair

[1111] ↵u2v1 = u1v2
�
v2
v1

�
4
�

�
v2
v1

�
3
= (↵� 1)

�
v3
v1

�
2

X = @1 + ��↵
1��

v1
v2
@2

u4v1 = u1v3 Y = @4 � �@3 + (�� ↵) v3v2 @2

[211] u2v1 � u1v2 = v1v2
�
v2
v1

�
3
=

�
v4
v1

�
2

X = @1 + (�� 1) v1v2 @2

u4v1 � u1v4 = v1v3 Y = @4 � �@3 + (�� 1) v4v2 @2

[22] u2v1 � u1v2 = v21
�
v2
v1

�
3
=

�
v4
v1

�
1

X = @2 �
⇣
�+ v2

v1

⌘
@1

u4v1 � u1v4 = v1v3 Y = @4 � �@3 � v4
v1
@1

[31] u2 = �v1v2 v23 + v2v14 � v4v12 = 0 X = @2 + �v2@1

u4 = v3 � v1v4 Y = @4 � �@3 + �v4@1

[4] u1 = v2 � v21 v24 � v13 + v4v11 � v1v14 = 0 X = @2 � (v1 + �)@1

u4 = v3 � v1v4 Y = @3 � v4@1 � �@4
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Table 3: canonical forms with one 4⇥ 3 Kronecker block

Segre type Canonical form Equation for v Lax pair

[111] u3v1 = ↵(v2 � v3)u1 m4 + ↵mn1 = n3 + ↵nm1 X = @2 � c(m+ �n)@1 � �2@4

u4v1 = ↵(v3 � v4)u1 m = v2�v3
v1

, n = v3�v4
v1

Y = @3 � cn@1 � �@4

c = 1 + ↵� �↵

[21] u3v1 � u1v3 = (v2 � ↵v3)v1 (@2 � ↵@3)
v4
v1

X = @2 + (�� ↵)�v4+v3
v1

@1 � �2@4

u4v1 � u1v4 = (v3 � ↵v4)v1 = (@3 � ↵@4)
v3
v1

Y = @3 + (�� ↵) v4v1 @1 � �@4

[3] u3 = v2 � v1v3 v24 � v33 = v3v14 � v4v13 X = @2 � (�v4 + v3)@1 � �2@4

u4 = v3 � v1v4 Y = @3 � v4@1 � �@4

Table 4: canonical forms with one 5⇥ 4 Kronecker block

Segre type Canonical form Equation for v Lax pair

[11] u3(v2 � v1) = u2(v3 � v2) m3 +mn1 = n2 + nm1 X = @3 � (�+m)@2 + �m@1

u4(v2 � v1) = u2(v4 � v3) m = v3�v2
v2�v1

, n = v4�v3
v2�v1

Y = @4 � (�2 + �m+ n)@2 + (�2m+ �n)@1

[2] v3(u2 � v1) = v2(u3 � v2) m3 +mn1 = n2 + nm1 X = @3 � (�+m)@2 + �m@1

v4(u2 � v1) = v2(u4 � v3) m = v3
v2
, n = v4

v2
Y = @4 � (�2 + �m+ n)@2 + (�2m+ �n)@1

Table 5: canonical form with one 6⇥ 5 Kronecker block

Segre type Canonical form Equation for v and Lax pair

[1] u2�u1v1
v2�v2

1
= u3�u1v2

v3�v1v2
= u4�u1v3

v4�v1v3
m3 +mn1 = n2 + nm1

X = @3 � (�+m)@2 + (�m� a)@1

Y = @4 � (�2 + �m+ n)@2 + (�2m+ �n� �a� b)@1

m = v3�v1v2
v2�v2

1
, n = v4�v1v3

v2�v2
1

, a =
v2
2�v1v3
v2�v2

1
, b = v2v3�v1v4

v2�v2
1

Table 6: canonical form with one 7⇥ 6 Kronecker block

Segre type Canonical form Lax pair

[0] u2�u1v1
v2�u1�v2

1
= u3�u1v2

v3�u2�v1v2
note that there is no equation for v in this case

= u4�u1v3
v4�u3�v1v3

X = @3 � (�+m)@2 + (�m� a)@1

Y = @4 � (�2 + �m+ n)@2 + (�2m+ �n� �a� b)@1

m = u3�u1v2
u2�u1v1

, n = u4�u1v3
u2�u1v1

, a = u2v2�u3v1
u2�u1v1

, b = u2v3�u4v1
u2�u1v1

Remark. Note that both systems from Table 4 are related to (one and the same!) quasilinear
system for the corresponding variables m,n, namely

m4 � n3 +mn2 � nm2 = 0, m3 � n2 +mn1 � nm1 = 0 (15)

(indeed, in terms of these variables their Lax pairs are identically the same). Thus, although the
original systems are not equivalent under the natural equivalence group SL(6), the corresponding
equations for v are related by a Bäcklund transformation. System (15) can be viewed as a
travelling wave reduction of the 6D integrable system

m6 � n5 +mn4 � nm4 = 0, m3 � n2 +mn1 � nm1 = 0
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discussed in [13].
Similarly, the coincidence of Lax pairs from Tables 5 and 6 indicates that the corresponding

systems can be considered as (nonlinear) reductions of one and the same first-order 4-component
system for the variables a, b,m, n resulting from the commutativity condition [X,Y ] = 0. This
4-component system can be viewed as yet another equivalent form of the equations governing
hyper-Hermitian conformal structures in 4D [10].

Notice that the absence of terms with @
�

in the Lax representations from Tables 2-6 means
that all solutions of the above systems carry hyper-Hermitian geometry [9], which is associated
to the canonical conformal structure.

Example. Let us give details of calculations in the case when the pair A,B contains one 3⇥ 2
Kronecker block (upper left) and a 4⇥ 4 Jordan block of Segre type [1111], explicitly,

A =

0

B@

1 0
0 1
0 0

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1

CA , B =

0

B@

0 0
1 0
0 1

↵ 0 0 0
0 � 0 0
0 0 � 0
0 0 0 �

1

CA .

The corresponding 2⇥ 6 matrix of linear forms is

✓
⇠1 ⇠2 ⇠4 ⇠5 ⇠6 ⇠7

⇠2 ⇠3 ↵⇠4 �⇠5 �⇠6 �⇠7

◆
=

✓
⇠6 ⇠7

�⇠6 �⇠7

◆✓
u1 u2 u3 u4 1 0
v1 v2 v3 v4 0 1

◆
,

so that

u1 =
�⇠1 � ⇠2

(� � �)⇠6
, u2 =

�⇠2 � ⇠3

(� � �)⇠6
, u3 =

(� � ↵)⇠4

(� � �)⇠6
, u4 =

(� � �)⇠5

(� � �)⇠6
,

v1 =
�⇠1 � ⇠2

(� � �)⇠7
, v2 =

�⇠2 � ⇠3

(� � �)⇠7
, v3 =

(� � ↵)⇠4

(� � �)⇠7
, v4 =

(� � �)⇠5

(� � �)⇠7
.

The elimination of ⇠’s leads to the following relations:

u3v4 =
(� � �)(� � ↵)

(� � ↵)(� � �)
u4v3, u4(v2 � �v1) =

� � �

� � �
v4(u2 � �u1).

Modulo equivalence transformations, this system is reducible to the first case of Table 2.

2.4 Symmetries of general linearly degenerate systems

The equivalence group SL(6) preserves both the class of Monge-Ampère equations and the class
given by the Chasles construction. The stabilizer of an equation is its linear symmetry group
(the full group of point symmetries of an integrable system is normally infinite-dimensional).

For Monge-Ampère systems, the Lie algebras s corresponding to these groups were indicated
in Table 1. Below we provide some data on the isotropy algebras for general linearly degenerate
systems from Tables 2-6. We denote by c(s) = {g 2 sl6 : [g, s] = 0} the centralizer of s, and by
n(s) = {g 2 sl6 : [g, s] ⇢ s} the normalizer of s.
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Table 7: types of isotropy algebras s ⇢ sl6 for general linearly degenerate systems in 4D

Segre type dim s dim c(s) dim n(s) Lie algebra type dim. derived ser.

[1111] 8 0 8 solvable (8,4,0)
[211] 8 0 8 solvable (8,4,0)
[22] 9 0 9 solvable (9,6,2,0)
[31] 9 0 9 solvable (9,6,2,0)
[4] 10 0 10 solvable (10,8,5,1,0)
[111] 6 2 8 solvable (6,3,0)
[21] 7 1 8 solvable (7,4,1,0)
[3] 8 0 8 solvable (8,6,3,0)
[11] 5 3 7 solvable (5,2,0)
[2] 6 0 6 solvable (6,4,1,0)
[1] 4 0 4 solvable (4,2,0)
[0] 3 0 3 simple: sl2 (3)

The listed dimensions do not separate types [1111] and [211], as well as [22] and [31]. Yet,
the symmetry algebras do distinguish between them. To see this let z =

P8
i=1 ziei be a general

element of s = he1, . . . , e8i in the first two cases. Denote by adz 2 End(s) the adjoint operator.
For the Segre type [1111] its spectrum is Sp(adz) = {0(⇥4), z1, z2, z3, z4}, while for the Segre
type [211] it is Sp(adz) = {0(⇥4), z1(⇥2), z2, z3}. Thus multiplicities of the eigenvalues for
general z distinguish these cases.

However the other two types are not distinguished by the multiplicities. Here dim s = 9, so
let z =

P9
i=1 ziei. For the Segre type [22] we have Sp(adz) = {0(⇥3),±iz1, z2, z3, z1+z2, z3�z1},

and for the Segre type [31], Sp(adz) = {0(⇥3), z1, z2, z3, 2z2, z1 + z2, z1 + 2z2}. But since linear
relations among the eigenvalues in these two cases are di↵erent, these types are also distinguished
by the symmetry algebras.

3 Proofs of the main results

After a short remark on the action of SL(6), we investigate the di↵erential prolongation of
conditions of linear degeneracy (10). The main feature of this second-order PDE system is its
non-involutivity, manifesting itself in additional (hidden) second-order di↵erential constraints.
These constraints are obtained by di↵erentiations and linear combinations of the equations in
the original system. Afterwards, we complete the proof of Theorem 1.

3.1 Action of the equivalence group

While the action of SL(6) on the Grassmannian Gr(4, 6) is transitive, the action on its tangent
space TGr(4, 6) has orbits distinguished by the rank of the corresponding 2 ⇥ 4 matrices. We
will need the action on the space of 1-jets J1

6Gr(4, 6) of submanifolds X ⇢ Gr(4, 6) of dimension
6, which can be identified with the space Gr6(TGr(4, 6)) locally isomorphic to J1(R6,R2).

Lemma. The equivalence group SL(6) has a unique Zariski open orbit in the space J1
6Gr(4, 6)

(its complement consists of 1-jets of degenerate systems).

Proof. The stabilizer in SL(6) of a point o 2 Gr(4, 6) is the parabolic subgroup P
o

= S(GL(2)⇥
GL(4))n(R2⌦R

4) of upper-triangular block matrices of the size 2+4. The summand R

2⌦R

4 acts
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trivially on T
o

Gr(4, 6), so the e↵ective action is only supported by the subgroup S(GL(2) ⇥
GL(4)). It is easy to check that this action is transitive on 6-planes corresponding to non-
degenerate 1-jets of X characterised by det g 6= 0 where g denotes a metric representative of the
canonical conformal structure [g] (see Section 1.2).

At the level of Lie algebra sl(6), the prolongation of the 35 infinitesimal generators U
i

,V
j

,
X

ij

,L
ij

, P
i

,Q
j

(see Section 1.4) to J1(R6,R2) has full rank in the Zariski open set of non-
degenerate 1-jets. Indeed, the 35 ⇥ 20 matrix of coe�cients of these vector fields drops rank
precisely on the submanifold det g = 0.

Remark. The next Sections contain details of calculations assisted with symbolic packages
Maple and Mathematica. However, even these packages cannot resolve the large linear systems
that arise after a prolongation to higher (third, forth and fifth) jets. To handle this di�culty we
used the following trick: since SL(6) acts on J1(R6,R2) with an open orbit consisting precisely of
admissible 1-jets, and since the prolongation, involutivity and integrability are SL(6)-equivariant
properties, we can substitute any numerical non-degenerate 1-jet into all prolonged equations; we
used (f1, f2, f3, f4, f5, f6) = (0, 1, 0, 1, 0, 0), (h1, h2, h3, h4, h5, h6) = (0, 0, 1, 0, 0, 0). This allows
to resolve the arising systems, and to compute their ranks without any loss of generality.

3.2 Prolongation of the conditions of linear degeneracy

To describe the result we will exploit the language of formal theory of di↵erential equations, cf.
[19]. Recall that a system of PDEs of order k on sections of a bundle ⌫ over a manifold X can be
respresented as a submanifold E

k

⇢ Jk(⌫) in the space of jets. In our case, X ⇢ Gr(4, 6) is the
sixfold encoding the system, and ⌫ = T

X

Gr(4, 6)/TX is its normal bundle. Locally, in the a�ne
chart we can identify X = R

6(u1, u2, u3, v1, v2, v3) and ⌫ = X ⇥ R

6(u4, v4) with sections given
by (9). Thus, an a�ne chart of Jk(⌫) is the space Jk(R6,R2) of jets of maps (f, h) : R6 ! R

2,
and we will further denote this space by Jk.

Let us consider the system E2 ⇢ J2 given by 20 PDEs (10) (note that these equations,
E

l

= 0, are quadratic expressions that are linear in 2-jets with coe�cients being linear in 1-

jets). Its prolongation E3 = E(1)
2 ⇢ J3 is given by adding 20 · 6 = 120 equations obtained by

di↵erentiating (10) (note that higher-order terms of these equations, D
i

E
l

= 0, are linear in
3-jets with coe�cients being linear in 1-jets).

These equations however are not in the Frobenius (closed) form, meaning that not all 3-jets,
which are fibre variables of the bundle ⇡3,2 : J3 ! J2 of rank 2 ·

�6+2
3

�
= 112, can be expressed

in terms of lower-order jets. In fact, the number of free 3-jets at this step is 17 (invariantly,
this means that the symbol g3 = Ker(d⇡3,2 : TE3 ! TE2) ⇢ S3

R

6⇤ ⌦ R

2 has codimension 17),
whence 120 � (112 � 17) = 25 combinations of our equations have vanishing 3-symbols. These
equations of order 2 define a proper locus Ẽ2 := ⇡3,2(E3) ⇢ E2 given by a quadratic ideal in 2-jet
variables.

Proposition 5. The system Ẽ2 = Ẽ 0
2 [ Ẽ 00

2 is a reducible algebraic (sub-)variety in J2
with an

irreducible component Ẽ 0
2 of codimension 24 and an irreducible component Ẽ 00

2 of codimension 30.

The intersection Ẽ 0
2 \ Ẽ 00

2 is an irreducible algebraic variety of codimension 34.

Proof. This is obtained by prime ideal decomposition. Indeed, the substitution of a non-
degenerate 1-jet x1 = {(f

a

, h
b

)} into the equations (see Remark in Section 3.1) splits the system
into 20 linear, and a bunch of quadratic equations in the variables f

ab

, h
ab

, 1  a  b  6. The
quadratic ideal is then seen to be generated by products of linear expressions (from the set of 4
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and 10 equations respectively), so that its locus in every ⇡�1
2,1(x1) is the union of two subspaces

that are linear in 2-jet variables (but polynomial in x1 2 J1), and this implies the claim.

The second prolongation E4 = E(2)
2 = E(1)

3 ⇢ J4 (obtained by adding equations D
i

D
j

E
l

= 0
whose higher-order terms are linear in 4-jets with coe�cients being linear in 1-jets) is already
in the Frobenius form (all 4-jets are expressed in terms of lower-order jets).

Yet the system generated by Ẽ2 is not in involution: the prolongation Ẽ(1)
2 ⇢ J3 is not in

closed form – the number of free 3-jets is 8. Even the system ⇡4,3(E4) ⇢ J3 is not closed –
the number of free 3-jets at this step is 3. We have to do one more prolongation: for the

system E5 = E(3)
2 = E(1)

4 ⇢ J5 (obtained by adding equations D
i

D
j

D
k

E
l

= 0) the projection
Ẽ3 = ⇡5,3(E5) ⇢ J3 is Frobenius (all 3-jets can be expressed, or equivalently the symbol g̃3 = 0).

Consequently, we obtain a PDE system Ẽ given by the second-order equation-manifold Ẽ2,
the third-order locus Ẽ3 (obtained by adding 112 third-order PDE), and its prolongations.

Proposition 6. The system Ẽ is involutive.

Proof: Due to Proposition 5 this system splits as Ẽ = Ẽ 0[ Ẽ 00 into the union of systems that are
linear in jets of order > 1. The symbols g̃

k

= Ker(d⇡
k,k�1 : T Ẽ

k

! T Ẽ
k�1) of the new systems

satisfy: dim g̃0 = 2, dim g̃1 = 2 ·6 = 12, dim g̃02 = 42�24 = 18, dim g̃002 = 42�30 = 12, dim g̃
k

= 0
for k > 2. Thus, the solution spaces of these equations have dimensions that are bounded by
dim g̃0 + dim g̃1 + dim g̃02 = 32 and dim g̃0 + dim g̃1 + dim g̃002 = 26, respectively.

To ensure involutivity we have to check that for every point o 2 X and every1-jet admissible
by the system Ẽ

o

= Ẽ \ ⇡�1
1,0(o) over it, there is a solution to (10) with this jet at o.

Let us start with the system Ẽ 0. We claim that all its solutions are given by the Chasles
construction. The latter have normal forms specified in Tables 2-6. The most general solution
has Segre type [0] and since its stabilizer in SL(6) is 3-dimensional, the space of solutions of the
Chasles type has dimension 35� 3 = 32.

Another way to see this is as follows. The general solution of the Chasles type is given by the
2-planes hA,Bi 2 Gr(2, U), where U = Hom(W,V ) ' R

6 ⌦ R

7⇤ is the space of 6 ⇥ 7 matrices:
X

A,B

= {Ax ^ Bx : x 2 W} ⇢ Gr(2, V ). Reparametrization (A,B) ⇠ (PA,PB) yields the
same solution for P 2 SL(7) (more general equivalence (A,B) ⇠ (PAQ,PBQ) yields equivalent
manifolds X

A,B

). Thus the space of solutions of the Chasles type has dimension 80� 48 = 32.
Moreover, the map hA,Bi 7! j1

o

(X
AB

) 2 Ẽ 0
o

from the projective variety Gr(2, U) to the
irreducible variety Ẽ 0

o

has an open image (by what we have already computed) and therefore
must be epimorphic. This proves the claim about Ẽ 0.

For the system Ẽ 00 we claim that all solutions are sixfolds X of the Monge-Ampère type. The
normal forms are collected in Table 1 and the most general of those is the Husain equation. Since
its stabilizer with respect to SL(6) is 9-dimensional, the space of 2-component Monge-Ampère
systems has dimension 35� 9 = 26. We can show that all solutions of Ẽ 00 are Monge-Ampère by
an approach similar to the case of Ẽ 0, but it is easier to conclude the claim by observing that 30
second-order equations specifying Ẽ 00

2 are exactly the PDEs from Proposition 3.
Finally, the intersection Ẽ 0 \ Ẽ 00 consists of linearizable systems. Indeed, the stabilizer of

a linear system is a 13-dimensional subgroup of SL(6), so that the space of such systems has
dimension 35� 13 = 22, which coincides with dim g̃0 + dim g̃1 + dim(g̃02 \ g̃002) = 2 + 12 + 8.

We can summarize the prolongation-projection of the conditions of linear degeneracy in the
following diagram.
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Ẽ : Linearly
degenerate systems

Ẽ 0: Chasles type
systems, W+ = 0

Ẽ 00: Monge-Ampère
systems, W� = 0

Ẽ 0 \ Ẽ 00: Linearizable
systems, W = 0

Note that the two irreducible components can be characterised in terms of the Weyl tensor
of the canonical conformal structure as self-dual and anti-self-dual systems (up to the change of
orientation).

3.3 Proof of Theorem 1

Implication (a)=)(c). Our strategy is to derive a set of constraints for the right-hand sides
f and h in (9) that are necessary and su�cient for integrability. As outlined in [7], in three
dimensions this leads to an involutive system of third-order integrability conditions for f and
h. The crucial di↵erence occuring in the 4D case is the appearance, along with third-order
constraints, of a whole set of second-order integrability conditions that turn out to be equivalent
to relations (10) characterising linearly degenerate systems. This shows that the requirement of
integrability in higher dimensions is far more rigid. Here are the details of calculations. Based
on evolutionary representation (9) we introduce the notation

u1 = a, u2 = b, u3 = c, v1 = p, v2 = q, v3 = r, u4 = f(a, b, c, p, q, r), v4 = h(a, b, c, p, q, r).

This results in the equivalent quasilinear representation of type (5),

a2 = b1, a3 = c1, a4 = f(a, b, c, p, q, r)1,

b3 = c2, b4 = f(a, b, c, p, q, r)2, c4 = f(a, b, c, p, q, r)3,

p2 = q1, p3 = r1, p4 = h(a, b, c, p, q, r)1,

q3 = r2, q4 = h(a, b, c, p, q, r)2, r4 = h(a, b, c, p, q, r)3.

(16)

Following the method of hydrodynamic reductions let us look for multi-phase solutions where
a, b, c, p, q, r are sought as functions of N phases R1, ..., RN that are required to satisfy a triple
of consistent (1 + 1)-dimensional systems (6),

Ri

x

2 = µi(R)Ri

x

1 , Ri

x

3 = ⌘i(R)Ri

x

1 , Ri

x

4 = �i(R)Ri

x

1 .

Here the characteristic speeds µi, ⌘i and �i satisfy the commutativity conditions (7),

@
j

�i

�j � �i

=
@
j

µi

µj � µi

=
@
j

⌘i

⌘j � ⌘i
, (17)
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i 6= j, @
j

= @
R

j . The substitution into (16) implies the relations

@
i

b = µi@
i

a, @
i

c = ⌘i@
i

a, @
i

q = µi@
i

p, @
i

r = ⌘i@
i

p, (18)

as well as
(�i � f

a

� µif
b

� ⌘if
c

)@
i

a = (f
p

+ µif
q

+ ⌘if
r

)@
i

p,

(�i � h
p

� µih
q

� ⌘ih
r

)@
i

p = (h
a

+ µih
b

+ ⌘ih
c

)@
i

a.
(19)

The last two equations imply the dispersion relation connecting �i, µi and ⌘i,

(�i � f
a

� µif
b

� ⌘if
c

)(�i � h
p

� µih
q

� ⌘ih
r

) = (f
p

+ µif
q

+ ⌘if
r

)(h
a

+ µih
b

+ ⌘ih
c

).

In what follows we assume that the dispersion relation defines a non-degenerate quadric in the
(�, µ, ⌘)-space: this is equivalent to the requirement of non-degeneracy from Section 1.2. Setting
in (19) @

i

a = 'i@
i

p we can parametrise µi and �i in the form

µi = �fp+(fa�hp)'i�ha'
i2+⌘

i(fr+(fc�hr)'i�hc'
i2)

fq+(fb�hq)'i�hb'
i2

,

�i = (fq+fb'
i)(hp+ha'

i)�(fp+fa'
i)(hq+hb'

i)+⌘

i[(fq+fb'
i)(hr+hc'

i)�(fr+fc'
i)(hq+hb'

i)]

fq+(fb�hq)'i�hb'
i2

.

Substituting these expressions into commutativity conditions (17), and using the relations

@
i

a = 'i@
i

p, @
i

b = µi'i@
i

p, @
i

c = ⌘i'i@
i

p, @
i

q = µi@
i

p, @
i

r = ⌘i@
i

p, (20)

we obtain @
j

'i and @
j

⌘i in the form @
j

'i = (. . . )@
j

p, @
j

⌘i = (. . . )@
j

p, i 6= j, where dots
denote rational expressions in 'i, 'j , ⌘i, ⌘j whose coe�cients depend on second-order partial
derivatives of f and h. Calculating consistency conditions for relations (20) we obtain (one and
the same!) expression for @

i

@
j

p in the form @
i

@
j

p = (. . . )@
i

p@
j

p, i 6= j, where, again, dots denote
terms rational in 'i, 'j , ⌘i, ⌘j . Ultimately, N -phase solutions are governed by the relations

@
j

'i = (. . . )@
j

p, @
j

⌘i = (. . . )@
j

p, @
i

@
j

p = (. . . )@
i

p@
j

p, (21)

i 6= j. Direct calculation of the compatibility conditions based on (20) and (21) results in

@
k

@
j

'i � @
j

@
k

'i = (. . . )@
j

p@
k

p, @
k

@
j

⌘i � @
j

@
k

⌘i = (. . . )@
j

p@
k

p,

@
k

@
j

@
i

p� @
j

@
k

@
i

p = (. . . )@
i

p@
j

p@
k

p,

where dots denote complicated rational expressions in 'i,'j ,'k and ⌘i, ⌘j , ⌘k, whose coe�cients
depend on partial derivatives of f and h up to the third order. To ensure the solvability of
equations (21) we set all these coe�cients equal to zero. Without any loss of generality we can
set (i, j, k) = (1, 2, 3). In particular, the coe�cient in the numerator of @3@2@1p � @2@3@1p at
the monomial ('1)12('2)9('3)6(⌘1)6(⌘2)(⌘3)3 has the form ⌧L2 where ⌧ is a nonzero expression
depending on first-order derivatives of f and h only, and

L = (f
r

h
b

� f
q

h
c

)(f2
r

f
qq

� 2f
q

f
r

f
qr

+ f2
q

f
rr

)
+(f

c

f
q

� f
b

f
r

+ f
r

h
q

� f
q

h
r

)(f2
r

h
qq

� 2f
q

f
r

h
qr

+ f2
q

h
rr

).

The condition L = 0 is linear in the second-order derivatives of f and h. Let us now utilise
the fact that conditions of integrability must be invariant under the action of the equivalence
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group. Acting on the condition L = 0 by transformations from the equivalence group SL(6) we
obtain all of the 20 second-order conditions of linear degeneracy (10).

Implications (b)=)(c). Let [g] be the conformal structure defined by the characteristic variety
of system (1). We shall demonstrate that, with a proper choice of orientation, the condition of
conformal half-flatness implies linear degeneracy. Let us note that in the splitting of the Weyl
tensor, W = W+ +W�, we use the Hodge star operator which depends on the square root of

det g =
⇣
1
4(fafqhc � f

a

f
r

h
b

� f
b

f
p

h
c

+ f
b

f
r

h
a

+ f
c

f
p

h
b

� f
c

f
q

h
a

� f
p

h
b

h
r

+ f
p

h
c

h
q

+ f
q

h
a

h
r

� f
q

h
c

h
p

� f
r

h
a

h
q

+ f
r

h
b

h
p

)
⌘2

,

in the notation of (16). Choosing
p
det g to be the expression in big parentheses, we define

the tensor ⇤W and observe the following. The condition of self-duality, W� = 0, consists of 30
equations that are equivalent to those of Proposition 3, and characterise PDEs of Monge-Ampère
type given by the system Ẽ 00 from Section 3.2. The condition of anti-self-duality, W+ = 0, consists
of 24 equations that characterise general linearly degenerate PDEs associated with quadratic
maps P6 99K Gr(4, 6). These are given by the system Ẽ 0 from Section 3.2.

Implication (c)=)(a). Since all linearly degenerate equations are classified in Tables 1-6, it
is straightforward to check that each of them passes the test for hydrodynamic integrability.

Implication (c)=)(b). Again, linearly degenerate equations have normal forms represented
in Tables 1-6. It can be straightforwardly verified that conformal structures corresponding to
them are half-flat (⇤W = ±W ) on every solution.

More conceptually, the result can be seen as follows. Every equation in Tables 1-6 has a
Lax pair with a spectral parameter, and according to [3] this implies self-duality (with a proper
choice of orientation). Here is a brief explanation. This Lax pair is a 2-distribution on the
correspondence space (x1, . . . , x4,�). The integral surfaces of this distribution projected to the
x-space form a 3-parametric family of null totally geodesic surfaces with respect to the conformal
structure on every solution u = u(x), v = v(x). According to Penrose [23], the existence of such
surfaces (known as ↵-surfaces) is equivalent to self-duality.

Implications (d)()(c). This is a direct corollary of Section 3.2.

This finishes the proof of Theorem 1.

Remark. Geometrically, Theorem 1 can be interpreted as follows. Let X be a sixfold in
Gr(4, 6). Taking a point o 2 X and projectivising the intersection of the tangent space T

o

X
with the Serge cone C in T

o

Gr(4, 6), which is the cone over a non-singular rational fourfold of
degree four in P

7 = PT
o

Gr(4, 6), one obtains a rational surface of degree four. This surface,
known as a rational normal scroll, can be interpreted as the set of matrices of rank one in
the tangent space T

o

X (recall that T
o

Gr(4, 6) is identified with the space of 2 ⇥ 4 matrices:
here we utilise the duality between Gr(4, 6) and Gr(2, 6)). Thus, the projectivised tangent
bundle of X is equipped with a field of rational normal scrolls of degree four. The integrability
conditions can be reformulated as the requirement of the existence in X of infinitely many
holonomic trisecant threefolds whose projectivised tangent spaces intersect the rational normal
scroll at three distinct points. These threefolds correspond to three-component hydrodynamic
reductions (we refer to [7, 26] for a related discussion). Theorem 1 states that this requirement
forces X to be algebraic, more precisely, X must be either a codimension 2 linear section of the
Plücker embedding Gr(4, 6) ,! P

14, or the image of a quadratic map P

6 99K Gr(4, 6). It would
be interesting to have a purely geometric proof of this result.
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4 Concluding remarks

We have obtained a complete description of integrable systems associated with sixfolds in
Gr(4, 6). The corresponding sixfolds are either codimension two linear sections of the Plücker
embedding Gr(4, 6) ,! P

14 or images of quadratic maps P

6 99K Gr(4, 6). Conversely, every
sixfold of one of the above types gives rise to an integrable system.

Let us compare the case of PDE systems in 3D associated to fourfolds in Gr(3, 5) studied
in [7] to that of PDE systems in 4D studied in this paper. While the main theorems expressing
integrability of the systems E = {F = 0, H = 0} via the geometric properties of solutions
(Einstein-Weyl property in 3D and self-duality in 4D) are similar in spirit, there are several
important di↵erences.

Integrable systems in 3D Integrable systems in 4D

The parameter space M = M30 is irreducible The parameter space M = M26
1 [M32

2 is reducible

The generic equation E 2 M is transcendental The generic equation E 2 M is algebraic

The moduli space M/G is a rational The moduli space M/G is 0-dimensional

algebraic variety of positive dimension (= 6) Each component of M has a unique Zariski open orbit

Parametrizable by special functions Finite classification of integrable cases

There exists @� term in the Lax pair (in general) There is no @� term in the Lax pair (hyper-complex case)

Finally, it would also be interesting to investigate the integrability problem for Grassman-
nians of higher dimensions. For instance, let u, v, w be functions of the independent variables
x1, . . . , x4. A first-order 3-component system,

F
i

(u1, . . . , u4, v1, . . . , v4, w1, . . . , w4) = 0, i = 1, 2, 3,

is naturally associated with a codimension 3 submanifold X ⇢ Gr(4, 7). We conjecture that
the requirement of integrability forces X to be either a codimension 3 linear section of Gr(4, 7)
(the case of Monge-Ampère systems), or the image of a cubic map P

9 99K Gr(4, 7) (general
linearly degenerate systems). The results of [6] suggest that even under these restrictions the
corresponding systems will not automatically be integrable, and additional geometric restrictions
on X will be required.
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