Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/258722
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorMatus, P.-
dc.contributor.authorGaspar, F.-
dc.contributor.authorHieu, L.M.-
dc.contributor.authorTuyen, V.T.K-
dc.date.accessioned2021-04-20T09:12:56Z-
dc.date.available2021-04-20T09:12:56Z-
dc.date.issued2017-
dc.identifier.citationComput Methods Appl Math 2017;17(2):287-298.ru
dc.identifier.urihttps://elib.bsu.by/handle/123456789/258722-
dc.description.abstractThe present paper is devoted to the development of the theory of monotone difference schemes, approximating the so-called weakly coupled system of linear elliptic and quasilinear parabolic equations. Similarly to the scalar case, the canonical form of the vector-difference schemes is introduced and the definition of its monotonicity is given. This definition is closely associated with the property of non-negativity of the solution. Under the fulfillment of the positivity condition of the coefficients, two-side estimates of the approximate solution of these vector-difference equations are established and the important a priori estimate in the uniform norm C is given.ru
dc.description.sponsorshipHorizon 2020 Framework Programme (H2020), 705402ru
dc.language.isoenru
dc.publisherWalter de Gruyter GmbHru
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математикаru
dc.titleMonotone Difference Schemes for Weakly Coupled Elliptic and Parabolic Systemsru
dc.typearticleru
dc.rights.licenseCC BY 4.0ru
dc.identifier.DOI10.1515/cmam-2016-0046-
dc.identifier.scopus85016785529-
Располагается в коллекциях:Статьи факультета прикладной математики и информатики

Полный текст документа:
Файл Описание РазмерФормат 
texto_completo.pdf302,92 kBAdobe PDFОткрыть
Показать базовое описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.