Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ:
https://elib.bsu.by/handle/123456789/258204
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Matus, P. | - |
dc.contributor.author | Hieu, L. M. | - |
dc.contributor.author | Vulkov, L. G. | - |
dc.date.accessioned | 2021-04-14T08:33:52Z | - |
dc.date.available | 2021-04-14T08:33:52Z | - |
dc.date.issued | 2017 | - |
dc.identifier.citation | J Comput Appl Math 2017;310:186-199. | ru |
dc.identifier.uri | https://elib.bsu.by/handle/123456789/258204 | - |
dc.description.abstract | On the base of the maximum principles two-sided estimates for solutions of difference schemes are proved without any assumption of sign-definiteness of input data. Second order unconditional monotone difference scheme for quasilinear convection–diffusion equation on uniform grids is constructed. A priori estimates of the difference solution on uniform norm C are established. The obtained results are generalized for the case of non-uniform spatial grids. Numerical experiments confirming theoretical results are presented. | ru |
dc.description.sponsorship | This work of the first and second authors was supported by the National Academy of Sciences of Belarus (Project Convergence 1.5.01). The work of the third author was supported by the European Union under Grant Agreement number 304617 (FP7 Marie Curie Action Project Multi-INT-STRIKE—Novel Methods in Computational Finance) and Bulgarian National Fund of Science under Project DFNI I02/20-2014. | ru |
dc.language.iso | en | ru |
dc.publisher | Elsevier | ru |
dc.subject | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика | ru |
dc.title | Analysis of second order difference schemes on non-uniform grids for quasilinear parabolic equations | ru |
dc.type | article | ru |
dc.rights.license | CC BY 4.0 | ru |
dc.identifier.DOI | 10.1016/j.cam.2016.04.006 | - |
dc.identifier.scopus | 84964582981 | - |
Располагается в коллекциях: | Статьи факультета прикладной математики и информатики |
Полный текст документа:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
1-s2.0-S0377042716301716-main.pdf | 474,31 kB | Adobe PDF | Открыть |
Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.