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1. Introduction

One of the actual problems of the contemporary computational mathematics is the increasing of the accuracy of the dif-
ference schemes onminimal stencil. A traditional approach for increasing of the accuracy of a method is to use non-uniform
grids. Generally, in this case the second order of approximation is lost. For example, at the approximation of the second
order derivative the relation

u′′ (xi)− ux̄x,i = O

hi+1 − hi + –h2

i


,

holds,where as usual ux̄x,i =

ux,i − ux̄,i


/–hi, ux,i = (ui+1 − ui) /hi+1, ux̄,i = (ui − ui−1) /hi, –hi = 0.5 (hi+1 + hi), hi is the step

of the non-uniform grid. It was found that at the non-computational point x̄i = (xi−1 + xi + xi+1) /3 = xi + (hi+1 − hi) /3
the standard approximation of second difference derivative preserves second order

u′′ (x̄i)− ux̄x,i = O

–h2
i


. (1)

It turned out that the using of such simple idea is a fruitful approach for construction of difference schemes of second order
of accuracy on non-uniform spatial grids for one-dimensional andmultidimensional elliptic and parabolic equations [1–11].
Similar construction in the case of variable coefficients is more complicated since already does not exist a point x∗, such that
the relation

k

x∗

u′

x∗
′

− (aux̄)x = O

–h2
i


,
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is fulfilled. Nevertheless, on the base of the equality
ku′
′

= 0, 5

(ku)′′ + ku′′

− k′′u

, (2)

difference schemes of such type were constructed for the inhomogeneous parabolic equations with variable coefficients
in [12].

In the present paper the previous results are generalized for construction of unconditional monotone difference scheme
of second-order of local approximation onnon-uniformgrids in space for the quasilinear parabolic equationwith unbounded
nonlinearity [13,14]

∂u
∂t

=
∂

∂x


k (u)

∂u
∂x


+ f (x, t) .

The finite-differencemethods satisfying the gridmaximumprinciple usually are calledmonotone [15]. Since a difference
scheme can be written in the canonical form, then one understands the monotonicity as the fulfilment of positivity
conditions on the coefficients of equations [15].

The monotone schemes play important role in the computational practice since the corresponding discrete problems
are well-posed [16]. Moreover they provide numerical solution without oscillations even in the case of non-smooth solu-
tions [17].

Usually the maximum principle is applied to prove existence and uniqueness of solutions of initial boundary value prob-
lems for parabolic and elliptic equations. In contrast to the energetic inequalities it is a powerful tool for establishing of a
priori estimates of the solution in the strong uniform norm for arbitrary dimensional problems with non-selfadjoint elliptic
operators [18].

It is non-less important that one can obtain lower estimates of the solutions to differential–difference problems or in the
general case two-sided estimates for the solution of the problems. This is especially important for investigation of theoretical
properties of the computational methods approximating problems with unbounded nonlinearities, where it is necessary to
prove that discrete solution belongs to a neighbourhood of the exact solution. As an example we investigate the Gamma
equationmodelling pricing of options in financial mathematics [19]. In this context, it is interesting to note the paper [20], in
which two-sided estimates for solution of difference schemes approximating Dirichlet problem for linear parabolic equation
are obtained in the discrete and continuous cases.

In the present paper on the base of maximum principle under positivity conditions for coefficients the important
two-sided estimate for the solution of the difference problem is proved without any assumption of sign-definiteness of
the input data. This inequality is often used for obtaining a priori estimates in the norm C (L∞).

The paper outline is as follows. In Section 2 the two-sided estimate of the solution of the difference problem is established
and conditions for correctness of a difference scheme approximating IBVP for quasilinear Gamma equation are formulated
and proved.

In Section 3 unconditional monotone difference scheme of second order of approximation for the quasilinear convec-
tion–diffusion equation on standard uniform grids is investigated. A priori estimates of the difference solution in uniform
norm C are established. In Sections 4–6 the obtained results are generalized for the case of non-uniform spatial grids and
some numerical experiments confirming theoretical results are presented.

2. Maximum principle for difference schemes with variable sign input data

Let in the n-dimensional Euclidian space a finite number of points of the grid Ωh is given. To each point x ∈ Ωh
we associate one and only one stencil M(x)—a subset of Ωh, containing this point. The set M′(x) = M(x) \ x is called
neighbourhood of the point x. Let the functions A(x), B(x, ξ), F(x) be given at x ∈ Ωh, ξ ∈ Ωh and they take real values. Next,
to each point x ∈ Ωh corresponds one and only one equation of the form [15]

A (x) y (x) =


ξ∈M′(x)

B (x, ξ) y (ξ)+ F (x) , x ∈ Ωh, (3)

which is called a canonical form of the difference scheme. Note that the set M′(x) could be empty, for example, in the case of
Dirichlet boundary condition. As a result we get a system of linear algebraic equations. This system is often called difference
scheme. Together with the gridΩh, we will consider its arbitrary subset ωh and we will denote

Ωh =


x∈ωh

M (x) .

For example, let Ωh be the set of the internal nodes at the approximation of the Poisson equation. Obviously, in this case
ωh = Ωh. According to [15], the point x is called a grid boundary node, if Dirichlet condition is posed

y(x) = µ(x), x ∈ γ ,

where γ is the set of the boundary nodes. We know that for approximation boundary conditions of second or third kind the
grid may not contain boundary nodes, i.e. all grid nodes will be only internal nodes. We will assume the fulfilment of the
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usual positivity conditions for the coefficients

A(x) > 0, B(x, ξ) > 0 for all ξ ∈ M′ (x) , (4)

D(x) = A(x)−


ξ∈M′(x)

B(x, ξ) > 0 for all ξ ∈ M′ (x) . (5)

They guarantee the unique solvability of the difference scheme (3), as well as its monotonicity and stability in the uniform
norm with respect to small perturbation of input data.

We now formulate the basic results that allow us to establish two-sided estimates for the discrete solution via input data
at non-sign-definite input data of problem F(x).

Theorem 1. Suppose that the positivity conditions for coefficients (4)–(5) are fulfilled. Then the maximal and minimal values of
the solution of the difference scheme (3) belong to the value interval of the input data

min
x∈Ωh

F (x)
D (x)

6 y (x) 6 max
x∈Ωh

F (x)
D (x)

. (6)

Proof. Suppose the maximum of the solution y(x) of the difference problem (3) is reached at the point x0 ∈ Ωh

max
x∈Ωh

y (x) = y(x0).

Then from Eq. (3) we have

A (x0) y (x0) =


ξ∈M′(x0)

B (x0, ξ) y (ξ)+ F (x0)

6


ξ∈M′(x0)

B (x0, ξ) y (x0)+ F (x0) .

The assumption of the theorem implies that

A (x0)−


ξ∈M ′(x0)

B (x0, ξ) = D(x0) > 0.

Therefore,

y (x) 6 y (x0) 6
F (x0)
D (x0)

6 max
x∈Ωh

F (x)
D (x)

for all x ∈ Ωh.

So the first estimate (6) is proved. In a similar way, the second estimate can be proved. In fact, let minimum of the grid
function y(x) be reached at the point x1 ∈ Ωh

min
x∈Ωh

y(x) = y(x1).

Then from Eq. (3) it follows

A (x1) y (x1) =


ξ∈M′(x1)

B (x1, ξ) y (ξ)+ F (x1)

>


ξ∈M′(x1)

B (x1, ξ) y (x1)+ F (x1) .

On the base of condition (5) we conclude that

y(x) > y(x1) > min
x∈Ωh

F(x)
D (x)

. �

Corollary 1 ([15]). Let conditions of Theorem 1 be fulfilled. Then for the solution of the difference problem (3) the following
estimate holds

∥y∥L∞ = ∥y∥C = max
x∈Ωh

|y (x)| ≤

 FD

C
.

Example 1. In the rectangle Q̄T = {(x, t) : 0 ≤ x ≤ l, 0 ≤ t ≤ T }we consider the following initial boundary value problem
for the quasilinear convection–diffusion equation with non-divergent convection term

∂u
∂t

=
∂

∂x


k (u)

∂u
∂x


+ r (x)

∂u
∂x

+ f (x, t) , 0 < x < l, 0 < t ≤ T , (7)

u (x, 0) = u0 (x) , u (0, t) = µ1 (t) , u (l, t) = µ2 (t) . (8)
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Following A. Friedman [21] Eq. (7) is called parabolic, if there exist two numbers k1, k2, such that

0 < k1 ≤ k (u) ≤ k2, ∀u ∈ D̄u, k1, k2 = const,

D̄u =

u (x, t) : m1 ≤ u (x, t) ≤ m2, (x, t) ∈ Q̄T


.

(9)

Now we consider the particular case of Gamma equation

∂u
∂t

=
∂2β

∂x2
+ r (x)

∂u
∂x
, (10)

obtained by transformation of the nonlinear Black–Scholes equation [19]. For the case β = u/ (1 − ρu)2, ρ > 0, we have
the coefficient k (u) of the form

k (u) =
1 + ρu

(1 − ρu)3
.

Then in view of (9), Eq. (10) is parabolic, if k (u) > 0, ∀u ∈ D̄u, i.e. if

−
1
ρ
< u <

1
ρ
. (11)

For the difference scheme of the form (3) approximating IBVP for Eq. (10) the positivity conditions for coefficients (4), (5)
are fulfilled. By Theorem 1 the condition (11) will be satisfied, if input data satisfies conditions

−
1
ρ
< min

xi∈Ωh

F n (xi)
Dn (xi)

≤ yni ≤ max
xi∈Ωh

F n (xi)
Dn (xi)

<
1
ρ
.

3. Finite difference scheme of second order of approximation on uniform grids

In this section two-sided estimates for an unconditional monotone second order difference scheme approximated equa-
tions (7)–(9) on uniform grid are obtained.

3.1. Difference scheme for the convection–diffusion equation

We consider the non-stationary convection–diffusion problem (7)–(9) [22] with constants m1, m2 defined by the
conditions

m1 = min
(x,t)∈Q̄T

{µ1 (t) , µ2 (t) , u0 (x)} + T min

0, min

(x,t)∈QT
f (x, t)


,

m2 = max
(x,t)∈Q̄T

{µ1 (t) , µ2 (t) , u0 (x)} + T max

0, max

(x,t)∈QT
f (x, t)


.

In order to construct amonotone scheme for (7) which satisfies themaximumprinciple for arbitrary h and τ , we consider
the equation with perturbed operator L̃ [15]

∂u
∂t

= L̃u + f , L̃u = κ (x, u)
∂

∂x


k (u)

∂u
∂x


+ r (x)

∂u
∂x
, (12)

where

κ (x, u) =
1

1 + R (x, u)
, R (x, u) =

h |r (x)|
2k (u)

.

We write r (x) as a sum

r = r+
+ r−, r+

=
1
2
(r + |r|) ≥ 0, r−

=
1
2
(r − |r|) ≤ 0,

and approximate r ∂u
∂x by the expression

r
∂u
∂x


i
=


r
k


k
∂u
∂x


i
∼ b+

i ai+1 (u) ux,i + b−

i ai (u) ux̄,i,

where

b+

i =
r+

i

k (ui)
≥ 0, b−

i =
r−

i

k (ui)
≤ 0, ai (u) =

1
2
(k (ui−1)+ k (ui)) ,

ux,i = (ui+1 − ui) /h, ux̄,i = (ui − ui−1) /h.
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We replace the operator L̃ at a fixed t = tj by the difference operator

Λ̃y = κ (a (y)yx̄)x + b+a (y)(+1)yx + b−a (y)yx̄, where a (y)(+1)
= ai+1 (y) .

Then for Eq. (12) on the uniform spatial and time grid

ω̄ = ω̄h × ω̄τ , ω̄h =

xi = ih, i = 0,N, hN = l


, ω̄h = ωh ∪ {x0 = 0, xN = l} ,

ω̄τ =

tn = nτ , n = 0,N0, τN0 = T


, ω̄τ = ωτ ∪


tN0 = T


,

we construct the difference scheme

yn+1
i − yni
τ

=
κn
i

h


ani+1 (y)

yn+1
i+1 − yn+1

i

h
− ani (y)

yn+1
i − yn+1

i−1

h



+ b+

i a
n
i+1 (y)

yn+1
i+1 − yn+1

i

h
+ b−

i a
n
i (y)

yn+1
i − yn+1

i−1

h
+ f n+1

i , (13)

yn+1
0 = µ1 (tn+1) , yn+1

N = µ2 (tn+1) , where κn
i = κ


xi, yni


.

3.2. Approximation error

The approximation error of the difference scheme (13) has the form

ψ = −ut + κ (a (u)ux̄)x + b+a(+1) (u)ux + b−a (u)ux̄ + f . (14)

Taking into account

b+
= r+/k, b−

= r−/k, r+
+ r−

= r, r+
− r−

= |r| ,

ut =
∂u
∂t

+ O (τ ) , (a (u)ux̄)x =
∂

∂x


k (u)

∂u
∂x


+ O


h2

+ τ

,

a(+1) (u)ux = k (u)
∂u
∂x

+ 0.5h
∂

∂x


k (u)

∂u
∂x


+ O


h2

+ τ

,

a (u)ux̄ = k (u)
∂u
∂x

− 0.5h
∂

∂x


k (u)

∂u
∂x


+ O


h2

+ τ

,

we get

b+a(+1) (u)ux + b−a (u)ux̄ = r (x)
∂u
∂x

+ R
∂

∂x


k (u)

∂u
∂x


+ O


h2

+ τ

.

It follows from (14) that

ψ =
R2

1 + R
∂

∂x


k (u)

∂u
∂x


+ O


h2

+ τ


= O

h2

+ τ

.

Therefore the difference scheme (13) has second order of approximationwith respect to space and first orderwith respect
to time.

3.3. Monotonicity, two-sided estimates and a priori estimates in the norm C

We write the difference scheme (13) in the canonical form (3)

An
i y

n+1
i = Bn

1iy
n+1
i−1 + Bn

2iy
n+1
i+1 + F n

i , i = 1, 2, . . . ,N − 1, n = 0,N0 − 1,
An
0y

n+1
0 = F n

0 , An
Ny

n+1
N = F n

N ,

with coefficients

Bn
1i =

τ

h2
ani (y)


κn
i − hb−

i


, B2i =

τ

h2
ani+1 (y)


κn
i + hb+

i


, i = 1,N − 1,

An
i = 1 + Bn

1i + Bn
2i, i = 1,N − 1, An

0 = An
N = 1,

F n
i = yni + τ f n+1

i , i = 1,N − 1, F n
0 = µn+1

1 , F n
N = µn+1

2 ,

Dn
i = An

i − Bn
1i − Bn

2i = 1, i = 0,N.

We need to prove that ani (y) > 0 for all i, n. In fact, when n = 0, it is obvious that a(u0) > 0. Assume that, for any arbitrary
n, ani (y) > 0 is also true. From this assumption we have Bn

1i > 0, Bn
2i > 0, An

i > 0. According to Theorem 1 on the base of the
estimate (6) for arbitrary t = tn ∈ ωτ and all i = 0, 1, . . . ,N , we have

min

µn+1

1 , µn+1
2 , min

1≤i≤N−1


yni + τ f n+1

i


≤ yn+1

i ≤ max

µn+1

1 , µn+1
2 , max

1≤i≤N−1


yni + τ f n+1

i


. (15)
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Using induction on n, from (15) we obtain the two-sided estimate via the input data without assumption for
sign-definiteness of input data

mn+1
1 ≤ yn+1

i ≤ mn+1
2 , i = 0,N, (16)

where

mn+1
1 = min

(x,t)∈Q̄T

{µ1 (t) , µ2 (t) , u0 (x)} + tn+1 min

0, min

(x,t)∈QT
f (x, t)


≥ m1,

mn+1
2 = max

(x,t)∈Q̄T

{µ1 (t) , µ2 (t) , u0 (x)} + tn+1 max

0, max

(x,t)∈QT
f (x, t)


≤ m2.

In view of (16) we obtain yn+1
i ∈ D̄u, i.e. an+1

i (y) > 0. Since all positivity conditions for the coefficients (4)–(5) are satisfied,
then the difference scheme (13) ismonotone for all h and τ (i.e. unconditionally monotone). Therefore, the following theorem
is proved.

Theorem 2. Suppose that the conditions (9) are fulfilled. Then the finite difference scheme (13) is unconditionally monotone and
for its solution y ∈ D̄u the above two-sided estimates (16) hold.

On the basis of the maximum principle in a standard way we obtain the a priori estimate in the norm C

∥y (tn)∥C(ω̄h)
≤ max


max
t∈[0,tn]

{|µ1 (t)| , |µ2 (t)|} , ∥u0∥C(0,l)


+ tn max

t∈[0,tn]
∥f (t)∥C(0,l) ,

where as usually

∥υ∥C(ω̄h) = max
x∈ω̄h

|υ (x)| , ∥g∥C(0,l) = max
0≤x≤l

|g (x)| .

Remark 1. It is interesting to note that the maximal and minimal values of the difference solution do not depend on the
diffusion coefficient k (u) and the convection coefficient r (x).

Example 2. We consider the particular case of Gamma Eq. (10) with initial and boundary conditions (8). In view of (16) for
the difference scheme (13), approximating the problem (8), (10), the condition (11) will be fulfilled, if for all i, n

−
1
ρ
< min

(x,t)∈Q̄T

{µ1 (t) , µ2 (t) , u0 (x)} ≤ yni ≤ max
(x,t)∈Q̄T

{µ1 (t) , µ2 (t) , u0 (x)} <
1
ρ
.

4. Finite difference scheme of second order of approximation on non-uniform grids

4.1. Difference schemes on non-uniform grids

We consider the initial boundary value problem with inhomogeneous boundary conditions for quasilinear parabolic
equation

∂u
∂t

=
∂

∂x


k (u)

∂u
∂x


+ f (x, t) , 0 < x < l, 0 < t ≤ T , (17)

u (x, 0) = u0 (x) , u (0, t) = µ1 (t) , u (l, t) = µ2 (t) . (18)

We suppose that there exist two real numbers k1 and k2 such that

0 < k1 ≤ k (u) ≤ k2, ∀u ∈ [m1,m2] . (19)

We introduce the non-uniform spatial grid ̄ωh = ωh ∪ γh,ωh = {xi = xi−1 + hi, i = 1, 2, . . . ,N − 1} , γh = {x0 = 0, xN = l} ,

and the uniform grid in time

ω̄τ = {tn = nτ , n = 0, 1, . . . ,N0, τN0 = T } = ωτ ∪ {T } .

On the standard six-point stencil using the identity (2) we construct the difference scheme of second order of approximation
on the non-uniform grid ω = ωh × ωτ

yt(β1β2) = 0.5

(k (y)y)x̄x + k(β1β2) (y)yx̄x − kx̄x (y)y(β3β4)+ ϕ, (20)

y0i = u0 (xi) , yn+1
0 = µ1 (tn+1) , yn+1

N = µ2 (tn+1) , (21)
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where

vt = (v − v) /τ , v = v (xi, tn+1) , ϕ = f (x̄i, tn+1) ,

vx̄x = (vx − vx̄) /–hi, vx = (vi+1 − vi) /hi+1, vx̄ = (vi − vi−1) /hi,

v(βkβk+1) = βkivi+1 +

1 − βki − βk+1,i


vi + βk+1,ivi−1,

β1i = 0.5
h̃i

+ h̃i


/hi+1, β2i = 0.5

h̃i

− h̃i


/hi, (22)

β3i = 0.5

h̃ikx̄x −

h̃ikx̄x / (hi+1kx̄x) , β4i = −0.5

h̃ikx̄x +

h̃ikx̄x / (hikx̄x) ,
x̄i = xi + h̃i, h̃i = (hi+1 − hi) /3, –hi = 0.5 (hi+1 + hi) .

The variable in space weights β1, β2, β3, β4 are chosen in order to fulfil the following condition

v(βkβk+1) − v (x̄i) = O

–h2
i


, k = 1, 3. (23)

In view of (23) we obtain the condition for choice of spatial weights β1, β2, β3, β4 in a similar way as in (22)

βkihi+1 − βk+1,ihi =
hi+1 − hi

3
= h̃i, k = 1, 3. (24)

4.2. Approximation error

We show that the difference scheme (20)–(21) approximates the problem (17)–(19) with second order with respect to
node x̄i, i.e.

Ψ (x̄i) = 0.5

(k (u)u)x̄x + k(β1β2) (u)ux̄x − kx̄x (u)u(β3β4)− ut(β1β2) + ϕ = O


–h2
i


.

Using (1) we get

(k (u)u)x̄x,i − ∂2 (k (u) u) (x̄i, tn+1)

∂x2
= O


–h2
i + τ


, (25)

kx̄x,i (u)−
∂2k (x̄i)
∂x2

= O

–h2
i


. (26)

In view of (23) we obtain

ut(β1β2) −
∂u (x̄i, tn+1)

∂t
= O


–h2
i + τ


, (27)

k(β1β2) (u)− k (ūi) = O

–h2
i


, ūi = u (x̄i) . (28)

Finally, from (1), (25)–(28) we find out that the approximation error is of second order in space

Ψ (x̄i, tn+1) = O

–h2
i + τ


.

Therefore, the difference scheme (20)–(21) on arbitrary non-uniform spatial grid approximates the original differential
problem with second order, so that

max
t∈ωτ

∥Ψ ∥C ≤ M

h̄2

+ τ

, h̄ = max

i
hi,

where as usual

∥.∥C = max
x∈ωh

|.| , M = const > 0.

4.3. Monotonicity, two-sided estimates and a priori estimates in the norm C

We rewrite the difference scheme (20)–(21) in the canonical form

An
i y

n+1
i−1 − Cn

i y
n+1
i + Bn

i y
n+1
i+1 = −F n

i , i = 1, 2, . . . ,N − 1, (29)

yn+1
0 = µ1 (tn+1) , yn+1

N = µ2 (tn+1) , (30)

where

An
i = −β2i + 0.5τ


k(β1β2)


yn

+ k


yni−1


/ (–hihi)− β4ikx̄x,i yn ,

Bn
i = −β1i + 0.5τ


k(β1β2)


yn

+ k


yni+1


/ (–hihi+1)− β3ikx̄x,i yn ,

Cn
i = 1 + An

i + Bn
i , F n

i = yn(β1β2) + τϕn+1
i , ϕn+1

i = f (x̄i, tn+1) , x̄i = xi + h̃i.
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The difference scheme (29)–(30) will be monotone, if the coefficients of (4)–(5) are positive, i.e. if

An
i > 0, Bn

i > 0, Dn
i = Cn

i − An
i − Bn

i > 0. (31)

For simplicity we denote h+ = hi+1, h = hi, –h = (h+ + h) /2, h̃ = (h+ − h) /3, v = vi = v (xi), v± = vi±1 = v (xi±1). Let us
consider the case h̃ > 0, kx̄x > 0 (we do not consider the trivial cases h̃ = 0 and kx̄x = 0), then we get the concrete values
of the weights

β1 = h̃/h+ > 0, β2 = β3 = 0, β4 = −h̃/h < 0,

k(β1β2) (y) =
h̃
h+

k (y+)+


1 −

h̃
h+


k (y) =

h̃
h+

k (y+)+
2h+ + h
3h+

k (y) > 0,

−β4kx̄x (y) =
h̃
h
kx̄x (y) > 0.

Hence A > 0 and

B = −
h̃
h+

+ 0.5τ


1 +

h̃
h+


k (y+)+


1 −

h̃
h+


k (y)

–hh+

.

Since
 h̃
h+

 < 1, we have B > −
h+−h
3h+

+
2τk1

h+(h+h+)
. This implies Bn

i > 0 at τ ≥
h2

i+1 − h2
i

 / (6k1). In a similar way we can
investigate all the other cases.

Therefore, the inequality

τ ≥

h2
+

− h2

C

6k1
(32)

guarantees the fulfilment of the positivity of the coefficients (4), (5) and (31) (i.e. the difference scheme (20)–(21) is
monotone) and on the basis of the estimate (6) for the arbitrary t = tn ∈ ωτ and all i = 0, 1, . . . ,N we have

min

µn+1

1 , µn+1
2 , min

1≤i≤N−1


yn(β1β2) + τϕn+1

i


≤ yn+1

i ≤ max

µn+1

1 , µn+1
2 , max

1≤i≤N−1


yn(β1β2) + τϕn+1

i


. (33)

Using induction in n from (33) and the inequalities

min
1≤i≤N−1

yn(β1β2) ≥ min
1≤i≤N−1

yni , max
1≤i≤N−1

yn(β1β2) ≤ max
1≤i≤N−1

yni ,

(since the variable weights β1, β2 ≥ 0 are non-negative) we get the two-sided estimate via the input data without sign-
definiteness of input data:

Theorem 3. Suppose that the conditions (32) are fulfilled. Then for the solution y ∈ D̄u of the difference scheme (20)–(21) the
double-sided estimate

m̄n
1 ≤ yni ≤ m̄n

2, i = 0,N, n = 0,N0,

holds, where

m̄n
1 = min

(x,t)∈Q̄T

{µ1 (t) , µ2 (t) , u0 (x)} + tn min

0, min

(x,t)∈QT
f (x, t)


≥ m1,

m̄n
2 = max

(x,t)∈Q̄T

{µ1 (t) , µ2 (t) , u0 (x)} + tn max

0, max

(x,t)∈QT
f (x, t)


≤ m2.

In a standard way on the base of the maximum principle the a priori estimate in the norm C can be established:

Theorem 4. Let the condition (32) be fulfilled. Then for the solution y ∈ D̄u of the difference problem (20)–(21) the following a
priori estimate holds

max
tn∈ωτ

∥y (tn)∥C(̄ωh) ≤ max


max
t∈[0,tn]

{|µ1 (t)| , |µ2 (t)|} , ∥u0∥C(0,l)


+ tn max

t∈[0,tn]
∥f (t)∥C(0,l) , (34)

where as usually

∥υ∥C(̄ωh) = max
x∈̄ωh

|υ (x)| , ∥g∥C(0,l) = max
0≤x≤l

|g (x)| .
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Remark 2. If the spatial grid is uniform (h+ = h), then the difference scheme (20) transforms to implicit scheme

yt = (a (y)yx̄)x + ϕ, a (y) = 0.5 [k (y)+ k (y−)] ,

for which the a priori estimate (34) holds without the restriction (32) on the relation between the steps h and τ (uncondi-
tional stability).

5. The non-stationary quasilinear convection–diffusion problem on non-uniform grids

In this section monotone difference schemes for the convection–diffusion problem (7)–(9) are constructed and analysed
on non-uniform grids. For simplicity we consider the linear case, when the convective term is non-divergent [22]

Lu =

k (x) u′

′
+ r (x) u′

− d (x) u = −f (x) , 0 < x < l, (35)
u (0) = µ1, u (l) = µ2, k (x) ≥ k1 > 0, d (x) ≥ d1 > 0. (36)

We develop a second-order difference scheme for which the maximum principle on arbitrary non-uniform grid ̄ωh holds.
For example, in the work [11] second-order monotone schemes are constructed using the methodology of A.A. Samarskii,
known as regularization principle [15]. Now we consider another approach for construction of similar schemes using the
identities (2) and ku′

= 0.5

(ku)′ + ku′

− k′u

. Denoting b (x) = r (x) /k (x) and L1v = v′′

+ bv′ we rewrite Eq. (35) in the
form

Lu = 0.5L1 (ku)+ 0.5kL1u − 0.5uL1k − du = −f .

We approximate the differential operator L1 on the gridωh by the second order difference operator L1h, i.e

L1hv = κvx̄x + b+vx + b−vx̄ = L1v (x̄)+ O

–h2 . (37)

Also, on the gridωh we replace the differential operator L by the difference one Lh

Lhu = 0.5L1h (ku)+ 0.5k(β1β2)L1hu − 0.5u(β̄3β̄4)L1hk − d̄u(β5β6), (38)

where

b+
=

r+

k
(x̄) ≥ 0, b−

=
r−

k
(x̄) ≤ 0, r±

= 0.5 (r ± |r|) ,

κ =
1

1 + R
, R =

h+ + 2h
6

b+
−

2h+ + h
6

b−
≥ 0, d̄ = d (x̄) .

The variable in space weights β̄3, β̄4, β5, β6 are chosen from requirement of second order of approximation (24) in the
following way

β̄3 = 0.5

h̃L1hk −

h̃L1hk / (h+L1hk) ,

β̄4 = −0.5

h̃L1hk +

h̃L1hk / (hL1hk) ,
β5 = 0.5


h̃ −

h̃ /h+, β6 = −0.5

h̃ +

h̃ /h.
Therefore, the difference scheme

Lhy = −ϕ, ϕ = f (x̄) , y0 = µ1, yN = µ2, (39)

approximates the differential problem (35)–(36) with second order on arbitrary non-uniform grid. It is interesting to
mention that in the case of uniform grid R = 0.5h |r| /k, and the difference scheme (39) reduces to the well-known
monotone scheme of second-order of approximation of A. A. Samarskii [15]. The difference scheme (39) can be written
in the canonical form (29)–(30)

Aiyi−1 − Ciyi + Biyi+1 = −Fi, i = 1, 2, . . . ,N − 1,
y0 = µ1, yN = µ2

with coefficients

Ai = 0.5

k(β1β2) + ki−1

 
κi − b−–hi


/ (–hihi)− β̄4iL1h,ik


− β6id̄i,

Bi = 0.5

k(β1β2) + ki+1

 
κi + b+–hi


/ (–hihi+1)− β̄3iL1h,ik


− β5id̄i, (40)

Ci = d̄i + Ai + Bi, Fi = f (x̄i) .
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It is clear that Ai > 0, Bi > 0,Di = d̄i > 0. So, for arbitrary non-uniform grid refinement the coefficients (40) of
the difference scheme (39) satisfy the conditions (31) (unconditional monotonicity). By Theorem 1 we obtain two-sided
estimates for the solution of the difference scheme (39)

min

µ1, µ2, min

1≤i≤N−1


f̄i/d̄i


≤ yi ≤ max


µ1, µ2, max

1≤i≤N−1


f̄i/d̄i


.

Also, by Corollary 1 the difference scheme (39) is stable with respect to right-hand side and the boundary conditions and
for the solution the following a priori estimate holds

∥y∥C̄ ≤ max

|µ1| , |µ2| ,

f̄i/d̄iC . (41)

Substituting y = z + u in Eq. (39), we get the problem for the method error

Lhz = −ψ, ψ = Lhu + ϕ, z|γh = 0. (42)

It is obvious that ψ = O

h̄2

, h̄ = max1≤i≤N hi. Since for the problem (42) all conditions (31) of the maximum principle are

fulfilled, then from (41) we find out that ∥z∥C̄ ≤ ∥ψ∥C ≤ ch̄2, i.e. the difference scheme (39) converges to the exact solution
with second order of convergence.

In a similar way we use formulas (27), (28), (37), (38) for construction on the usual six-point stencil of monotone
difference scheme of second order of approximation of the non-stationary convection–diffusion equations (7)–(9) on the
non-uniform gridω = ωh×ωτ with the help of the change g (x, u) = r (x) /k (u) and the operatorΛv = v′′

+gv′, v = v (u)

yt(β1β2) = 0.5

Λh (k (y)y)+ k(β1β2) (y)Λhy −y(β̃3β̃4)Λhk (y)


+ ϕ, (43)

y0i = u0 (xi) , yn+1
0 = µ1 (tn+1) , yn+1

N = µ2 (tn+1) , (44)

where

Λhv = κ̄vx̄x + g+vx + g−vx̄, Λhv = κ̄vx̄x + g+vx + g−vx̄,
β̃3 = 0.5


h̃Λhk −

h̃Λhk
 / (h+Λhk) , β̃4 = −0.5


h̃Λhk +

h̃Λhk
 / (hΛhk) ,

g+
= r+ (x̄) k̄ (y) ≥ 0, g−

= r− (x̄) k̄ (y) ≤ 0, r±
= 0.5 (r ± |r|) ,

k̄ (y) = [1/k (y−)+ 1/k (y)+ 1/k (y+)] /3, κ̄ =

1 + R̄

−1
,

R̄ =
h+ + 2h

6
g+

−
2h+ + h

6
g−

≥ 0.

Now we consider the approximation error of the difference scheme (43)–(44)

ψ

x̄, t̂


= −ut(β1β2) + 0.5

Λh (k (u)u)+ k(β1β2) (u)Λhu −u(β̃3β̃4)Λhk (u)


+ ϕ. (45)

Taking into account that

vx = v′ (x̄)+
h+ + 2h

6
v′′ (x̄)+ O


–h2 ,

vx̄ = v′ (x̄)−
2h+ + h

6
v′′ (x̄)+ O


–h2 ,

g+
+ g−

= r (x̄) k̄ (u) , k̄ (u) = 1/k (ū)+ O

–h2 , u = u (x̄) ,

we get

g+vx + g−vx̄ =
r (x̄)
k (ū)

v′ (x̄)+ R̄v′′ (x̄)+ O

–h2 ,

and hence

Λhv = v′′ (x̄)+ g (x̄, ū) v′ (x̄)+ O

–h2

= Λv (x̄)+ O

–h2 . (46)

It follows from (46), that

Λh (k (u)u) = Λ (k (u) u)

x̄, t̂

+ O


–h2

+ τ

, (47)

Λhu = Λu

x̄, t̂

+ O


–h2

+ τ

, Λhk (u) = Λk (u)


x̄, t̂

+ O


–h2

+ τ

. (48)

In view of (27), (28), (47), (48) for the approximation error (45) of the difference scheme (43)–(44) we obtain

ψ

x̄, t̂


= O

–h2

+ τ

.
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We write the difference scheme (43)–(44) in the canonical form (29)–(30) with coefficients

An
i = −β2i + 0.5τ


k(β1β2)


yn

+ k


yni−1

 
κ̄i − –hig−


/ (–hihi)− β̃4iΛh,ik


yn

,

Bn
i = −β1i + 0.5τ


k(β1β2)


yn

+ k


yni+1

 
κ̄i + –hig+


/ (–hihi+1)− β̃3iΛh,ik


yn

, (49)

Cn
i = 1 + An

i + Bn
i , F n

i = yn(β1β2) + τϕn+1
i , ϕn+1

i = f (x̄i, tn+1) .

It is easy to show [12], that the inequality

τ ≥


1 + 0.5h̄c0

 h2
+

− h2

C

6k1
,

h̄ = max
1≤i≤N

hi, c0 = max
0≤i≤N
0≤n≤N0

|r (xi)|
k (u (xi, tn))

,

guarantees the positivity of the coefficients An
i , B

n
i , C

n
i (49). For practical computations as constant c0 we can use the

expression

c0 = max
0≤i≤N
0≤n≤N0

|r (xi)|
k (y (xi, tn))

.

Remark 3. Using [9] the results obtained above can be generalized on two-dimensional convection–diffusion equa-
tions [22]. Let Ω̄ = {x = (x1, x2) : 0 ≤ x1 ≤ l1, 0 ≤ x2 ≤ l2} be a rectangle with boundary Γ . For simplicity we consider
the following boundary value problem

∂2u (x)
∂x21

+
∂2u (x)
∂x22

+ r1 (x)
∂u (x)
∂x1

+ r2 (x)
∂u (x)
∂x2

− q (x) u (x) = −f (x) , x ∈ Ω, (50)

u (x) = µ (x) , x ∈ Γ , q (x) ≥ c1 > 0, |rα (x)| ≤ c2, α = 1, 2. (51)

In the domain Ω̄ we introduce arbitrary non-uniform grid

̄ωh =


xi1 i2 =


xi11 , x

i2
2


, xiαα = xiα−1

α + hiα
α , iα = 1, 2, . . . ,Nα − 1, x0α = 0, xNαα = lα, α = 1, 2


,

where
Nα

iα=1 h
iα
α = lα, α = 1, 2. Denote byωh the set of the grid internal nodes, and let γh be the set of boundary nodes,

i.e. ̄ωh = ωh∪γh. Then the finite difference scheme of second-order of approximation for problem (50)–(51) on non-uniform̄ωh has a form

κ1y(2)x̄1 x̂1 + κ2y(1)x̄2 x̂2 + r̄+

1 y(2)x1 + r̄−

1 y(2)x̄1 + r̄+

2 y(1)x2 + r̄−

2 y(1)x̄2 − q̄y(δ∗) = −f̄ , x ∈ ωh, (52)

y (x) = µ (x) , x ∈ γh. (53)

Here we use the following notations

yx̄α x̂α =
1
h̄α


yxα − yx̄α


, yxα =

1
hα+


y(+1α) − y


, yx̄α =

1
hα


y − y(−1α)


,

hα = hiα
α , hα+ = hiα+1

α , h̄α = 0.5 (hα + hα+) , v(±11) = vi1±1i2 , v(±12) = vi1 i2±1,

v̄ = v (x̄) , x̄ = (x̄1, x̄2) , x̄α = xα + h̃α, h̃α = (hα+ − hα) /3, δ±

α = 0.5

h̃α ±

h̃α ,
κα =

1
1 + Rα

, Rα = r̄+

α

hα+ + 2hα
6

− r̄−

α

2hα+ + hα
6

,

r+

α = 0.5 (rα + |rα|) ≥ 0, r−

α = 0.5 (rα − |rα|) ≤ 0, y(δ∗) = y +

2
α=1


δ−

α yxα + δ+

α yx̄α

,

y(1) = y (x̄1, x2) = y + δ+

1 yx1 + δ−

1 yx̄1 , y(2) = y (x1, x̄2) = y + δ+

2 yx2 + δ−

2 yx̄2 .

Approximation error of difference scheme (52)–(53) has the second order of smallness with respect to |h| =

h2
1 + h2

2

1/2,
hα = maxiα h

iα
α , α = 1, 2, i.e. there exists a constantM1 independent of h1, h2 such that

∥Ψ ∥C(̄ωh) ≤ M1 |h|2 .
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For simplicity we consider the case of hiα+1
α − hiα

α > 0, δ−
α = 0, α = 1, 2. Then difference scheme (52)–(53) takes a simpler

form

κ1


y +

h2+ − h2

3
yx2


x̄1 x̂1

+ κ2


y +

h1+ − h1

3
yx1


x̄2 x̂2

+ r̄+

1


y +

h2+ − h2

3
yx2


x1

+ r̄−

1


y +

h2+ − h2

3
yx2


x̄1

+ r̄+

2


y +

h1+ − h1

3
yx1


x2

+ r̄−

2


y +

h1+ − h1

3
yx1


x̄2

− q̄

y +

h1+ − h1

3
yx̄1 +

h2+ − h2

3
yx̄2


= −f̄ , x ∈ ω̂h, y (x) = µ (x) , x ∈ γh. (54)

We rewrite difference scheme (54) in the canonical form (3) and check conditions (4)–(5). As a result we obtain that the
positivity conditions of all coefficients are satisfied, if

h1+ − h1

h̄1
<

3κ1
2κ2 + r̄+

2 h2 − r̄−

2 h2+


h̄2

h̄1

2

, (55)

h2+ − h2

h̄2
<

3κ2
2κ1 + r̄+

1 h1 − r̄−

1 h1+


h̄1

h̄2

2

, (56)

i.e. difference scheme (54) is monotone. According to Theorem 1 on the base of the estimate (6) we have

min

min
x∈γh

µ (x) ,min
x∈ωh


f̄ /q̄


≤ y (x) ≤ max

max
x∈γh

µ (x) ,max
x∈ωh


f̄ /q̄

, x ∈ ̄ωh.

Then the difference scheme (54) is stable with respect to the right-hand side and the boundary conditions and the following
a priori estimate in the norm C holds

∥y∥C(̄ωh) ≤ max

∥µ∥C(γh) ,

f̄ /q̄C(ωh)


.

Restrictions (55)–(56) are due to the fact that already does not exist a point x̄∗
=

x̄∗

1, x̄
∗

2


, such that the relation

1u

x̄∗

− ux̄1 x̂1 − ux̄2 x̂2 = O


|h|2


,

is fulfilled. However, they are considerably weaker than in the case of quasi-uniform grids [23], where the following
conditions are required

hα+ − hα = O

h̄2
α


, α = 1, 2.

6. Numerical experiments

6.1. The case of non-uniform grid for the quasilinear parabolic equation

We consider the problem (17)–(19) with input data
l = 2π, k (u) = u2,

f (x, t) = et sin
x
4

−
1
8
e3t cos2

x
4
sin

x
4

+
1
16

e3t sin3 x
4
,

u0 (x) = sin
x
4
, µ1 (t) = 0, µ2 (t) = et ,

and the exact solution u (x, t) = et sin(x/4). To verify the efficiency of the new algorithms on non-uniformgridswe compare
the maximum norm of the error of the method

∥z∥C = ∥y − u∥C = max
(x,t)∈ω

|y (x, t)− u (x, t)| ,

for difference scheme (20) approximating problem (17)–(19) and the well-known conservative scheme of first order of
approximation

yt = (a (y)yx̄)x + f

x, t̂

, a (y) = 0.5 [k (y)+ k (y−)] . (57)

In Table 1 the starting non-uniform spatial nodes are shown. The numerical results are shown in Table 2. Increasing the
number of the nodes of the grid is realized by halving each segment by the law x2i = (0.375 + r) xi+1 + (0.625 − r) xi,
where r ∈ [0, 0.25)—is random variable of the normal distribution.

The computational experiment illustrates the higher accuracy of the new scheme on coarse space grids. For the scheme
(20) the accuracy of order O


h2

+ τ

is reached on the coarse grids, in the scheme (57) only for sufficiently small h, τ .
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Table 1
Starting non-uniform spatial nodes (N = 10).

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

0 0.2 1.6 2.1 2.8 3.2 4.8 5 5.4 5.9 2π

Table 2
Numerical results on non-uniform spatial grids for Eqs. (17)–(19) (FDS—finite difference scheme).

N, hmax, τ = 0.025 10, 1.6, τ 20, 0.916, τ/4 40, 0.484, τ/16
FDS (20) (57) (20) (57) (20) (57)

∥z∥C 0.02 0.083 0.00465 0.051 0.00146 0.0279

Table 3
Numerical results on non-uniform spatial grids for
Eqs. (35)–(36).

N, hmax ∥z∥C

10, 1.6 0.468
20, 0.93 0.3
40, 0.495 0.0835
80, 0.271 0.022
160, 0.149 0.0058

6.2. The case of the non-uniform grid for the stationary linear convection–diffusion equation

We consider the problem (35)–(36) with input data

k (x) = ex, f (x) =

4ex + x2


cos 2x + 2


ex + sin x


sin 2x,

l = 2π, r (x) = sin x, d (x) = x2, µ1 = µ2 = 1,

and the exact solution u (x) = cos 2x. We use starting space grids given in Table 1. In Table 3 we show the error of the
method in maximum norm

∥z∥C = ∥y − u∥C = max
(x,t)∈ω

|y (x)− u (x)| ,

for the difference scheme (39).
The numerical experiments illustrate the higher accuracy of the new scheme and the order of accuracy O


h2

is reached

on coarse grids.
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