Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ:
https://elib.bsu.by/handle/123456789/258191Полная запись метаданных
| Поле DC | Значение | Язык |
|---|---|---|
| dc.contributor.author | Doubrov, B. | - |
| dc.contributor.author | Ferapontov, E.V. | - |
| dc.contributor.author | Kruglikov, B. | - |
| dc.contributor.author | Novikov, V.S. | - |
| dc.date.accessioned | 2021-04-14T06:03:36Z | - |
| dc.date.available | 2021-04-14T06:03:36Z | - |
| dc.date.issued | 2017 | - |
| dc.identifier.citation | J Math Phys 2017;58(6) | ru |
| dc.identifier.uri | https://elib.bsu.by/handle/123456789/258191 | - |
| dc.description.abstract | We investigate a class of multi-dimensional two-component systems of Monge- Ampere type that can be viewed as generalisations of heavenly type equations appearing in a self-dual Ricci-flat geometry. Based on the Jordan-Kronecker theory of the skew-symmetric matrix pencils, a classification of normal forms of such systems is obtained. All two-component systems of Monge-Ampere type turn out to be integrable and can be represented as the commutativity conditions of parameterdependent vector fields. Geometrically, systems of Monge-Ampere type are associated with linear sections of the Grassmannians. This leads to an invariant differentialgeometric characterisation of the Monge-Ampere property. | ru |
| dc.language.iso | en | ru |
| dc.publisher | American Institute of Physics Inc. | ru |
| dc.subject | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика | ru |
| dc.title | On a class of integrable systems of Monge-Ampére type | ru |
| dc.type | article | ru |
| dc.rights.license | CC BY 4.0 | ru |
| dc.identifier.DOI | 10.1063/1.4984982 | - |
| dc.identifier.scopus | 85020635525 | - |
| Располагается в коллекциях: | Статьи факультета прикладной математики и информатики | |
Полный текст документа:
| Файл | Описание | Размер | Формат | |
|---|---|---|---|---|
| DFKN_Monge-Amp.pdf | 293,16 kB | Adobe PDF | Открыть |
Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.

