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Abstract

We investigate a class of multi-dimensional two-component systems of Monge-Ampère type that
can be viewed as generalisations of heavenly-type equations appearing in self-dual Ricci-flat geometry.
Based on the Jordan-Kronecker theory of skew-symmetric matrix pencils, a classification of normal
forms of such systems is obtained. All two-component systems of Monge-Ampère type turn out to be
integrable, and can be represented as the commutativity conditions of parameter-dependent vector
fields.

Geometrically, systems of Monge-Ampère type are associated with linear sections of the Grass-
mannians. This leads to an invariant differential-geometric characterisation of the Monge-Ampère
property.
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1 Introduction

Let u(x) and v(x) be functions of d independent variables x = (x1, . . . , xd). In paper [6] we have initiated
the study of integrability of first-order systems of the form

F (u1, . . . , ud, v1, . . . , vd) = 0, G(u1, . . . , ud, v1, . . . , vd) = 0, (1)

where F,G are (nonlinear) functions of the partial derivatives ui = ∂u
∂xi , vi = ∂v

∂xi . The geometry behind
systems (1) is as follows. Let V be the (d+ 2)-dimensional vector space with coordinates x1, . . . , xd, u, v.
Solutions to system (1) correspond to d-dimensional submanifolds of V defined as u = u(x), v = v(x).
Their d-dimensional tangent spaces, specified by the equations du = uidx

i, dv = vidx
i, are parametrised

by 2× d matrices

U =

(
u1 . . . ud
v1 . . . vd

)
,

whose entries are restricted by equations (1). Thus, equations (1) can be interpreted as the defining
equations of a codimension two submanifold X in the Grassmannian Gr(d, V ). Solutions to system
(1) correspond to d-dimensional submanifolds of V whose tangent spaces (translated to the origin) are
contained in X. Equations of type (1) arise in numerous applications in the theory of dispersionless
integrable systems, general relativity and differential geometry. For d = 3 their integrability aspects, as
well as the geometry of the associated fourfolds X ⊂ Gr(3, 5), were thoroughly investigated in [6].

In this paper we consider an important subclass of multi-dimensional (d ≥ 3) equations (1) known as
systems of Monge-Ampère type (Jacobi systems),

aij(uivj − ujvi) + biui + civi +m = 0,
αij(uivj − ujvi) + βiui + γivi + µ = 0,

(2)

where each equation corresponds to a constant-coefficient linear combination of the minors of U . Systems
of type (2) were discussed previously in [3] from the point of view of ‘complete exceptionality’ of the
Cauchy problem. Geometrically, submanifolds X associated with such systems are linear sections of the
Plücker embedding of Gr(d, V ) into PΛd(V ). Note that the class of Monge-Ampère systems is invariant
under the natural action of the equivalence group SL(V ). In what follows we assume systems (1), (2) to
be non-degenerate in the sense that the corresponding characteristic variety,

det

[
d∑
i=1

pi

(
Fui Fvi
Gui

Gvi

)]
= 0,

defines an irreducible quadric of rank d for d ≤ 4, and rank 4 for d > 4 (note that 4 is the maximal
possible value for the rank of a quadratic form representable as the determinant of a 2 × 2 matrix with
entries linear in pi). This non-degeneracy property holds for all examples of physical/geometric relevance.

Our main results can be summarised as follows:

• All Monge-Ampère systems (2) are integrable, with Lax representations in parameter-dependent
commuting vector fields. This result was, in a sense, unexpected: indeed, it was demonstrated in
[5] that second-order analogues of systems (1), known as symplectic Monge-Ampère equations, are
not integrable in general for d ≥ 3. Our approach is based on the observation that every Monge-
Ampère system (2) can be defined by a pair of differential d-forms in V , that is, by two elements
of Λd(V ∗). Utilising the SL(V )-equivariant duality between Λd(V ∗) and Λ2(V ) we can reduce the
theory of normal forms of Monge-Ampère systems to the classification of pencils of skew-symmetric
two-forms. This, however, is the classical territory (in Sect. 2.1 we recall the main ingredients of
the theory of Jordan-Kronecker normal forms of skew-symmetric matrix pencils). Thus we obtain
normal forms of Monge-Ampère systems in all dimensions d (see below), for which the integrability
can be established directly.

• For d = 2, 3 any non-degenerate system of Monge-Ampère type is linearisable (Theorem 1 of Sect.
2.2). For d = 2 this is certainly a well-known result, see e.g. [14].
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• For d = 4 any non-degenerate system of Monge-Ampère type is SL(6)-equivalent to one of the
following normal forms (Theorem 2 of Sect. 2.3):

1. u2 − v1 = 0, u3 + v4 = 0,

2. u2 − v1 = 0, u3 + v4 + u1v2 − u2v1 = 0,

3. u2 − v1 = 0, u3v4 − u4v3 − 1 = 0,

4. u2 − v1 = 0, u1 + v2 + u3v4 − u4v3 = 0,

see Sect. 2.3 for the associated Lax representations. Introducing a potential w such that w1 =
u, w2 = v, one obtains well-known integrable second-order PDEs: w13 +w24 = 0 (linear equation),
w13 + w24 + w11w22 − w2

12 = 0 (second heavenly equation [17]), w13w24 − w14w23 − 1 = 0 (first
heavenly equation [17]), and w11 +w22 +w13w24−w14w23 = 0 (Husain equation [13]), respectively.
All of them originate from self-dual Ricci-flat geometry.

• For d = 5 any non-degenerate system of Monge-Ampère type is SL(7)-equivalent to one of the
following normal forms (Theorem 3 of Sect. 2.4):

1. u1 + v2 + u3v4 − u4v3 = 0, u2 + v3 + u4v5 − u5v4 = 0,

2. u2 − v1 = 0, u1 + v5 + u3v4 − u4v3 = 0,

3. u2 − v1 = 0, u4 + v5 + u1v3 − u3v1 = 0,

4. u2 − v1 = 0, u5 + u3v4 − u4v3 = 0,

see Sect. 2.4 for the associated Lax representations. Note that most of the above normal forms
(apart from case 1, d = 5) can be obtained as travelling wave reductions of the 6-dimensional
integrable Monge-Ampère system

u2 − v1 = 0, u5 + v6 + u3v4 − u4v3 = 0, (3)

which reduces to the second-order equation w15 + w26 + w13w24 − w14w23 = 0 for a potential w
defined as w1 = u, w2 = v. This equation appeared in hyper-Kähler geometry [19] and can be
obtained as a reduction of sdiff(Σ2) self-dual Yang-Mills equations [18].

• For arbitrary d generic normal forms are discussed in Sect. 2.5. Note that the cases of even/odd
dimensions lead to essentially different normal forms. Thus, for even d = 2k + 2 (Jordan case) a
generic Monge-Ampère system can be reduced to the form

u2k+1 = (u1v2 − u2v1) + (u3v4 − u4v3) + ...+ (u2k−1v2k − u2kv2k−1),
v2k+2 = a1(u1v2 − u2v1) + a2(u3v4 − u4v3) + ...+ ak(u2k−1v2k − u2kv2k−1),

here a1, . . . , ak are arbitrary constants. For odd d = 2k + 1 (Kronecker case) a generic Monge-
Ampère system can be reduced to the form

u1 + v2 = (u3v4 − u4v3) + (u5v6 − u6v5) + ...+ (u2k−1v2k − u2kv2k−1),
u2 + v3 = (u4v5 − u5v4) + (u6v7 − u7v6) + ...+ (u2kv2k+1 − u2k+1v2k),

see Sect. 2.5 for the associated Lax representations.

• One can show that all Monge-Ampère systems of type (2) possess infinitely many hydrodynamic
reductions, see [7, 8] for further details.

• In Theorem 4 of Sect. 3 we demonstrate that the necessary and sufficient conditions for a codi-
mension two submanifold X ⊂ Gr(d, V ) to be a linear section is that the only ‘essential’ second
fundamental forms of X are the ones coming from Gr(d, V ) itself. This property can be reformu-
lated as a system of second-order differential constraints for the functions F,G defining system (1)
thus providing an invariant differential-geometric characterisation of Monge-Ampère systems.
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Remark. In 2D, Monge-Ampère systems (2) constitute a translationally invariant subclass of the more
general Jacobi systems,

a1 + b1u1 + c1u2 + d1v1 + e1v2 + f1(u1v2 − u2v1) = 0,
a2 + b2u1 + c2u2 + d2v1 + e2v2 + f2(u1v2 − u2v1) = 0,

where the coefficients ai, bi, ci, di, ei, fi are functions of x1, x2, u, v. Geometrically, Jacobi systems are
specified by the vanishing of a pair of 2-forms on a 4-dimensional manifold with coordinates x1, x2, u, v.
The theory of such systems was thoroughly developed in [14]. An interesting link of 2D Jacobi systems
to the generalised complex geometry of Hitchin is discussed in [1].

The situation in higher dimensions is much more delicate. A Jacobi system for n unknown func-
tions ui of the n independent variables xi is a set of n first-order partial differential equations, each of
which is a linear combination of the minors (of all possible orders) of the corresponding n× n Jacobian
matrix. Geometrically, such systems are specified by the vanishing of n differential n-forms on the 2n-
dimensional manifold with coordinates xi, ui. Even in the translationally invariant setting, the questions
of linearisability/integrability of such systems are largely open.

2 Classification of Monge-Ampère systems

2.1 Jordan-Kronecker normal forms of skew-symmetric pencils

Here we follow [10] to review Jordan-Kronecker normal forms of skew-symmetric pencils on a vector space
V of dimension d+ 2. Any such pencil gives rise to two elements in Λ2(V ). Taking the dual elements in
Λd(V ∗) and equating them to zero we obtain normal forms of Monge-Ampère systems.

A skew-symmetric pencil can be written in the form µA + λB where A and B are skew-symmetric
matrices considered modulo simultaneous transformations A → XAXt, B → XBXt, while [λ : µ] ∈ P1

is defined modulo automorphisms of P1. Normal forms of such pencils are classified by the following data:

• minimal indices 0 ≤ m1 ≤ m2 ≤ · · · ≤ mp, p ≥ 0 (in particular, the set of minimal indices
can be empty). Each minimal index mi corresponds to a Kronecker block Mmi of the odd size
(2mi + 1)× (2mi + 1).

• elementary divisors (a1µ+ b1λ)e1 , . . . , (aqµ+ bqλ)eq where [ai : bi] are considered as points in P1.
Each elementary divisor (aiµ + biλ)ei corresponds to a Jordan block Eei [ai : bi] of the even size
2ei × 2ei.

Explicitly, the canonical form of the pencil specified by these data is

P =



Mm1

. . .

Mmp

Ee1 [a1 : b1]
. . .

Eeq [aq : bq]


(4)
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where the Kronecker blocks Mm and the Jordan blocks En[a : b] are defined as follows:

Mm =

(
0 Mm

−M t
m 0

)
, size (2m+ 1)× (2m+ 1), M0 = (0),

En([1 : b]) =

(
0 En(b)

−En(b)t 0

)
, size (2n)× (2n),

En([0 : 1]) =

(
0 Fn
−F tn 0

)
, size (2n)× (2n).

Here we use the notation

Mm =



λ
λ µ

· µ
· ·

· ·
λ ·

λ µ
µ


, size (m+ 1)×m,

En(b) =



µ+ bλ
· λ

·
· ·
·

µ+ bλ ·
µ+ bλ λ


, size n× n,

Fn =



λ
· µ

·
· ·
·

λ ·
λ µ


, size n× n.

In addition, elementary divisors are considered up to non-degenerate linear transformations of λ and µ,
in other words, parameters [ai : bi] are considered modulo projective transformations. We also impose
the following non-degeneracy conditions:

• The pencil does not have zero minimal indices (that is, no 1 × 1 zero Kronecker blocks M0).
Otherwise, the corresponding Monge-Ampère system reduces to a system of lower dimension.

• For d ≥ 3, the pencil does not contain elements of rank two. These elements correspond to equations
of the type ui = 0 and result in degenerate systems with characteristic varieties of rank 2.

Any element of rank four in the pencil gives rise to an equation of the type u2 − v1 = 0. Introducing
the potential w such that w1 = u, w2 = v, we can reduce the corresponding system to a single second-
order Monge-Ampère equation for w. Note that a pencil may contain several elements of rank four that
might lead to non-equivalent second-order Monge-Ampère equations (see Remark 2 in Sect. 2.3).
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2.2 Linearisability of Monge-Ampère systems for d = 2, 3

The classification of 4× 4 and 5× 5 skew-symmetric pencils leads to the following result:

Theorem 1 For d = 2, 3, any non-degenerate system of Monge-Ampère type is linearisable.

Proof:
For d = 2 one needs to classify non-degenerate 4× 4 pencils. Note that in this case we allow elements

of rank two in the pencil. There are only two non-equivalent normal forms without zero minimal indices,
namely ( . µ . .

−µ . . .
. . . λ
. . −λ .

)
,

(
. . . λ
. . λ µ
. −λ . .

−λ −µ . .

)
.

Both pencils give rise to linear systems. Indeed, the first pencil corresponds to 2-forms

dz1 ∧ dz2 and dz3 ∧ dz4.

(z1, . . . , z4 denote coordinates in 4-dimensional space V ). Setting u = z4, v = z2, x1 = z1, x2 = z3 and
equating these 2-forms to zero we obtain the linear hyperbolic system u1 = 0, v2 = 0 (note that we do
not need to use the duality transformation for d = 2). Similarly, the second pencil corresponds to 2-forms

dz1 ∧ dz4 + dz2 ∧ dz3 and dz2 ∧ dz4.

Setting u = z4, v = z3, x1 = z1, x2 = z2 and equating these 2-forms to zero we obtain the linear
parabolic system u1 = 0, v1 − u2 = 0.

For d = 3 one needs to classify non-degenerate 5 × 5 pencils. The non-degeneracy constraints imply
that the only possibility is a single 5× 5 Kronecker block,

. . . . λ

. . . λ µ

. . . µ .

. −λ −µ . .
−λ −µ . . .

 .

It is generated by the bi-vectors

∂z1 ∧ ∂z5 + ∂z2 ∧ ∂z4 and ∂z2 ∧ ∂z5 + ∂z3 ∧ ∂z4 ,

the corresponding dual 3-forms are

dz2 ∧ dz3 ∧ dz4 + dz1 ∧ dz3 ∧ dz5, dz1 ∧ dz3 ∧ dz4 + dz1 ∧ dz2 ∧ dz5.

Setting u = z5, v = z4, x1 = z1, x2 = z2, x3 = z3 and equating these 3-forms to zero we obtain the
linear hyperbolic system v1 − u2 = 0, v2 − u3 = 0. This finishes the proof of Theorem 1.

We emphasize that the linearisability of Monge-Ampère systems for d = 2, 3 does not generalise to
higher dimensions d ≥ 4, see the classification results below.

2.3 Classification of Monge-Ampère systems for d = 4

The classification of 6× 6 skew-symmetric pencils leads to the following result:

Theorem 2 In four dimensions, any non-degenerate system of Monge-Ampère type is SL(6)-equivalent
to one of the following normal forms:

1. u2 − v1 = 0, u3 + v4 = 0,

2. u2 − v1 = 0, u3 + v4 + u1v2 − u2v1 = 0,
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3. u2 − v1 = 0, u3v4 − u4v3 − 1 = 0,

4. u2 − v1 = 0, u1 + v2 + u3v4 − u4v3 = 0.

Proof:
One needs to classify non-degenerate 6 × 6 skew-symmetric pencils. First assume that there is a

non-empty set of minimal indices. As any minimal index of the pencil corresponds to a Kronecker block
of odd size, there should be two of them, both equal to 1. This leads to the normal form consisting of
two 3× 3 Kronecker blocks, 

. . λ . . .

. . µ . . .
−λ −µ . . . .
. . . . . λ
. . . . . µ
. . . −λ −µ .

 ,

which corresponds to linear system 1. Indeed, the above pencil is generated by the bi-vectors

∂z1 ∧ ∂z3 + ∂z4 ∧ ∂z6 and ∂z2 ∧ ∂z3 + ∂z5 ∧ ∂z6 .

The corresponding dual 4-forms are

dz2 ∧ dz4 ∧ dz5 ∧ dz6 + dz1 ∧ dz2 ∧ dz3 ∧ dz5, dz1 ∧ dz4 ∧ dz5 ∧ dz6 + dz1 ∧ dz2 ∧ dz3 ∧ dz4.

Setting u = z6, v = z3, x1 = z4, x2 = z1, x3 = −z2, x4 = z5 and equating these 4-forms to zero we
obtain linear system 1.

Now assume that the set of minimal indices is empty. The non-degeneracy assumption implies that for
any [ai : bi], there can be only one elementary divisor (aiµ+ biλ)ei . So, up to projective transformations
the only possible lists of elementary divisors are:

• {λ3},

• {λ2, µ},

• {λ, µ, λ+ µ}.

Explicitly, the associated pencils have the form
. . . . . λ
. . . . λ µ
. . . λ µ .
. . −λ . . .
. −λ −µ . . .

−λ −µ . . . .

 ,


. . . λ . .
. . λ µ . .
. −λ . . . .

−λ −µ . . . .
. . . . . µ
. . . . −µ .

 ,


. λ . . . .

−λ . . . . .
. . . µ . .
. . −µ . . .
. . . . . λ+µ
. . . . −λ−µ .

 ,

which correspond to systems 2-4, respectively. This finishes the proof of Theorem 2.

Remark 1. It was demonstrated in [12] that self-dual Ricci-flat geometry can be described by the
Monge-Ampère system

u2 − v1 = 0, v2 + u3v4 − u4v3 = 0,

which, upon the substitution w1 = u, w2 = v, implies the Grant equation w22 + w13w24 − w14w23 = 0.
Note that the linear transformation x2 → −v, v → x2 identifies the above system with system 3 from
Theorem 2 which corresponds to the first heavenly equation [12].

Remark 2. Let us consider system 3,

u2 − v1 = 0, u3v4 − u4v3 − 1 = 0,
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which is related to the first heavenly equation. Interchanging the roles of u and x3 we obtain the equivalent
system,

u3 − v4 = 0, u2 + v1u3 − v3u1 = 0,

which leads to the modified heavenly equation, w24 +w13w34−w33w14 = 0, for the potential w defined by
the relations w4 = u, w3 = v. The modified heavenly equation appeared recently in the classification of
integrable symplectic Monge-Ampère equations [5]. Thus, system 3 provides a Bäcklund transformation
connecting the first heavenly and the modified heavenly equations. We point out that these second-order
equations are not equivalent under the natural equivalence group Sp(8) acting on symplectic Monge-
Ampère equations in 4D.

Remark 3. All nonlinear systems from Theorem 2 possess Lax pairs of the form [X,Y ] = 0 where X
and Y are parameter-dependent vector fields.
System 2: u2 − v1 = 0, u3 + v4 + u1v2 − u2v1 = 0,

X = ∂4 + u1∂2 − u2∂1 + λ∂1, Y = ∂3 − v1∂2 + v2∂1 − λ∂2.

System 3: u2 − v1 = 0, u3v4 − u4v3 − 1 = 0,

X = u3∂4 − u4∂3 + λ∂1, Y = −v3∂4 + v4∂3 − λ∂2.

System 4: u2 − v1 = 0, u1 + v2 + u3v4 − u4v3 = 0,

X = ∂2 + u3∂4 − u4∂3 + λ∂1, Y = ∂1 − v3∂4 + v4∂3 − λ∂2.

Modifications of the inverse scattering transform and the ∂-dressing method for Lax pairs of this type
were developed in [15, 16, 2].

2.4 Classification of Monge-Ampère systems for d = 5

The classification of 7× 7 skew-symmetric pencils leads to the following result:

Theorem 3 In five dimensions, any non-degenerate system of Monge-Ampère type is SL(7)-equivalent
to one of the following normal forms:

1. u1 + v2 + u3v4 − u4v3 = 0, u2 + v3 + u4v5 − u5v4 = 0,

2. u2 − v1 = 0, u1 + v5 + u3v4 − u4v3 = 0,

3. u2 − v1 = 0, u4 + v5 + u1v3 − u3v1 = 0,

4. u2 − v1 = 0, u5 + u3v4 − u4v3 = 0.

Proof:

One needs to classify non-degenerate 7×7 skew-symmetric pencils. As the size of matrices is odd, the
set of minimal indices cannot be empty. Simple analysis shows that there can be at most one minimal
index equal to 1, 2 or 3. The latter case is generic and corresponds to the single Kronecker block

. . . . . . λ

. . . . . λ µ

. . . . λ µ .

. . . . µ . .

. . −λ −µ . . .

. −λ −µ . . . .
−λ −µ . . . . .

 .

It leads to system 1. If the minimal index is 2, then we can assume that the remaining elementary divisor
is λ. If the minimal index is 1, then the possible lists of minimal divisors are equivalent to {λ2} or {λ, µ}.
Explicitly, these three pencils are:

. . . . λ . .

. . . λ µ . .

. . . µ . . .

. −λ −µ . . . .
−λ −µ . . . . .
. . . . . . λ
. . . . . −λ .

 ,


. . λ . . . .
. . µ . . . .

−λ −µ . . . . .
. . . . . . λ
. . . . . λ µ
. . . . −λ . .
. . . −λ −µ . .

 ,


. . λ . . . .
. . µ . . . .

−λ −µ . . . . .
. . . . λ . .
. . . −λ . . .
. . . . . . µ
. . . . . −µ .

 .
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The corresponding systems are 2, 3 and 4, respectively. This finishes the proof of Theorem 3.

Remark. All systems from Theorem 3 possess Lax pairs of the form [X,Y ] = 0 where X and Y are
parameter-dependent vector fields.
System 1: u1 + v2 + u3v4 − u4v3 = 0, u2 + v3 + u4v5 − u5v4 = 0,

X = ∂2 + λ∂3 + u3∂4 − u4∂3 + λ(u4∂5 − u5∂4),
Y = ∂1 + λ∂2 − v3∂4 + v4∂3 − λ(v4∂5 − v5∂4).

System 2: u2 − v1 = 0, u1 + v5 + u3v4 − u4v3 = 0,

X = ∂5 + u3∂4 − u4∂3 + λ∂1, Y = ∂1 − v3∂4 + v4∂3 − λ∂2.

System 3: u2 − v1 = 0, u4 + v5 + u1v3 − u3v1 = 0,

X = ∂5 + u1∂3 − u3∂1 + λ∂1, Y = ∂4 − v1∂3 + v3∂1 − λ∂2.

System 4: u2 − v1 = 0, u5 + u3v4 − u4v3 = 0,

X = u3∂4 − u4∂3 + λ∂1, Y = ∂5 − v3∂4 + v4∂3 − λ∂2.

2.5 Monge-Ampère systems for arbitrary d

Since normal forms of skew-symmetric pencils in even/odd dimensions are essentially different, we will
consider these cases separately. Moreover, we will only discuss generic normal forms.

Even dimension. For d = 2k+ 2 a generic skew-symmetric pencil can be brought to the Jordan normal
form with 2× 2 blocks along the diagonal. The corresponding system is

u2k+1 = (u1v2 − u2v1) + (u3v4 − u4v3) + ...+ (u2k−1v2k − u2kv2k−1),
v2k+2 = a1(u1v2 − u2v1) + a2(u3v4 − u4v3) + ...+ ak(u2k−1v2k − u2kv2k−1),

here a1, . . . , ak are arbitrary constants. Relabelling coordinates we can rewrite these equations in the
form

ut =

k∑
i=1

(uxivyi − uyivxi), vτ =

k∑
i=1

ai(uxivyi − uyivxi).

The corresponding Lax pair is given by

X = ∂τ +

k∑
i=1

αi(uxi∂yi − uyi∂xi), Y = ∂t +

k∑
i=1

βi(vxi∂yi − vyi∂xi),

where αi = 1
λ − ai, βi = 1− λai.

Odd dimension. For d = 2k + 1 a generic skew-symmetric pencil can be brought to the Kronecker
normal form. The corresponding system is

u1 + v2 = (u3v4 − u4v3) + (u5v6 − u6v5) + ...+ (u2k−1v2k − u2kv2k−1),
u2 + v3 = (u4v5 − u5v4) + (u6v7 − u7v6) + ...+ (u2kv2k+1 − u2k+1v2k).

Its Lax pair is given by

X = ∂2 + λ∂3 −
2k∑
i=3

αi(ui∂i+1 − ui+1∂i), Y = ∂1 + λ∂2 +

2k∑
i=3

αi(vi∂i+1 − vi+1∂i),

where α2s−1 = 1, α2s = λ.

Since generic normal forms are integrable in any dimension, and integrability is preserved in the limit,
we conclude that all systems of Monge-Ampère type must be integrable.
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3 Differential geometry of Monge-Ampère systems

Consider system (1) of dimension d = m+ 1. Representing it in evolutionary form,

um+1 = f(u1, . . . , um, v1, . . . , vm), vm+1 = g(u1, . . . , um, v1, . . . , vm), (5)

we will derive differential constraints for the functions f and g that characterise systems (2) of Monge-
Ampère type. Let us begin with the simplest case d = 2,

u2 = f(u1, v1), v2 = g(u1, v1), (6)

which however contains all essential ingredients of the general case.

Proposition 1. System (6) is of Monge-Ampère type if and only if the (symmetric) differentials d2f
and d2g are proportional to the quadratic form dfdv1 − dgdu1:

d2f, d2g ∈ span{dfdv1 − dgdu1}. (7)

Proof:

Equations (6) specify a surface X in the Grassmannian Gr(2, 4). The Plücker embedding of Gr(2, 4)
into P5 is a quadric with position vector (u1, v1, u2, v2, u2v1−u1v2). The induced embedding of X has
position vector

R = (u1, v1, f, g, v1f − u1g).

To prove that system (6) is of Monge-Ampère type we need to show that components of R satisfy 2 linear
relations with constant coefficients or, equivalently, that the Plücker image of X lies in a 3-dimensional
linear subspace of P5. This means that the union of all osculating spaces of X must be 3-dimensional.
Since the tangent space of X, spanned by the vectors

Ru1
= (1, 0, fu1

, gu1
, v1fu1

− u1gu1
− g),

Rv1 = (0, 1, fv1 , gv1 , v1fv1 − u1gv1 + f),

is already 2-dimensional, we have to show that the union of the second- and third-order osculating spaces
(spanned by the second- and third-order partial derivatives of the position vector R with respect to u1
and v1) has dimension 1. As higher-order derivatives of R have zeros in the first two positions, the rank
of the following matrix must equal 1:

rk



fu1u1 gu1u1 v1fu1u1 − u1gu1u1 − 2gu1

fu1v1 gu1v1 v1fu1v1 − u1gu1v1 + fu1
− gv1

fv1v1 gv1v1 v1fv1v1 − u1gv1v1 + 2fv1
fu1u1u1

gu1u1u1
v1fu1u1u1

− u1gu1u1u1
− 3gu1

fu1u1v1 gu1u1v1 v1fu1u1v1 − u1gu1u1v1 + fu1u1 − 2gu1v1

fu1v1v1 gu1v1v1 v1fu1v1v1 − u1gu1v1v1 + 2fu1v1 − gv1v1
fv1v1v1 gv1v1v1 v1fv1v1v1 − u1gv1v1v1 + 3fv1v1


= 1.

Since the terms of the third column containing multiples of v1 or u1 are proportional to the first and
second columns, respectively, and can therefore be eliminated without changing the rank, we obtain a
simpler condition,

rk



fu1u1
gu1u1

−2gu1

fu1v1 gu1v1 fu1
− gv1

fv1v1 gv1v1 2fv1
fu1u1u1 gu1u1u1 −3gu1

fu1u1v1 gu1u1v1 fu1u1 − 2gu1v1

fu1v1v1 gu1v1v1 2fu1v1 − gv1v1
fv1v1v1 gv1v1v1 3fv1v1


= 1.
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This condition is equivalent to the requirement that the first and second columns are proportional to the
third column. Let p and q be the corresponding coefficients of proportionality. In compact form, this can
be represented as

d2f = 2p(dfdv1 − dgdu1), d2g = 2q(dfdv1 − dgdu1), (8)

and
d3f = 3p(d2fdv1 − d2gdu1), d3g = 3q(d2fdv1 − d2gdu1), (9)

respectively. Calculating (symmetric) differentials of (8) and comparing the result with (9) we obtain the
equations for p and q,

dp = p(pdv1 − qdu1), dq = q(pdv1 − qdu1). (10)

Equations (8) and (10) constitute a closed involutive differential system for f and g which characterises
Monge-Ampère systems. It remains to note that conditions (10) can be obtained as the consistency
conditions of equations (8) alone, without using (9). In other words, equations (8) imply both (9) and
(10). This finishes the proof of Proposition 1.

Remark 1. Condition (7) has a clear projective-geometric interpretation. Recall that the second funda-
mental forms of X ⊂ P5 are spanned by d2f, d2g and dfdv1−dgdu1. Here the last form is the restriction
to X of the second fundamental form of the Grassmannian Gr(2, 4), namely, du2dv1− dv2du1. Thus, (7)
says that the only ‘essential’ second fundamental form of X ⊂ Gr(2, 4) is the one coming from the second
fundamental form of Gr(2, 4) ⊂ P5. This property is clearly necessary for X to be a linear section. The
above result shows that in this particular case it is also sufficient.

Remark 2. Condition (7) can be written as a system of PDEs for f and g, indeed, the elimination of p
and q from (8) implies the second-order relations

fu1u1
=

2gu1

gv1−fu1
fu1v1 , fv1v1 =

2fv1
fu1−gv1

fu1v1 ,

gu1u1
=

2gu1

gv1−fu1
gu1v1 , gv1v1 =

2fv1
fu1

−gv1
gu1v1 .

(11)

The case of arbitrary dimension d = m+ 1 can be considered in a similar way.

Theorem 4 System (5) is of Monge-Ampère type if and only if

d2f, d2g ∈ span{duidvj − dujdvi, dfdvi − dgdui | i, j = 1, . . . ,m}. (12)

Proof:

Equations (5) specify a submanifold X in Gr(d, V ) whose Plücker embedding into PΛ2(V ) has position
vector

(ui, vi, f, g, uivj − ujvi, vif − uig), i, j = 1, . . . ,m.

To prove that system (5) is of Monge-Ampère type we need to show that X lies in a linear subspace of
codimension two. Calculation of osculating spaces similar to that from the proof of Proposition 1 implies
that this requirement is equivalent to the conditions

d2f = 2aij(duidvj − dujdvi) + 2pi(dfdvi − dgdui),
d2g = 2bij(duidvj − dujdvi) + 2qi(dfdvi − dgdui),

(13)

as well as
d3f = 3pi(d2fdvi − d2gdui), d3g = 3qi(d2fdvi − d2gdui), (14)

(the standard summation convention is assumed). Moreover, for the first two terms in (13) we assume
i < j. Calculating (symmetric) differentials of (13) and comparing the result with (14) we obtain the
equations for the coefficients,

daij = aijω1 − bijω2, dbij = aijϕ1 − bijϕ2,
dpi = piω1 − qiω2, dqi = piϕ1 − qiϕ2,

(15)
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where we adopt the notation

ω1 = pidvi, ω2 = pidui, ϕ1 = qidvi, ϕ2 = qidui.

We point out that, modulo (15), these forms satisfy the structure equations

dω1 = ϕ1 ∧ ω2, dω2 = ω1 ∧ ω2 + ϕ2 ∧ ω2, dϕ1 = ϕ1 ∧ ϕ2 + ϕ1 ∧ ω1, dϕ2 = ϕ1 ∧ ω2.

Equations (13) and (15) constitute a closed involutive differential system for f and g which characterises
Monge-Ampère systems. It remains to point out that conditions (15) can be obtained as the consistency
conditions of equations (13) alone, without using (14). In other words, equations (13) imply both (14)
and (15). This finishes the proof of Theorem 4.

Remark 3. Condition (12) means that the only essential second fundamental forms of the submanifold
X ⊂ Gr(d, V ) are the ones coming from the Grassmannian itself. These conditions can be written as a
system of second-order PDEs for f and g,

fuiui
=

2gui

gvi−fui
fuivi , fvivi =

2fvi
fui

−gvi
fuivi ,

fuiuj
=

guj

gvi−fui
fuivi +

gui

gvj−fuj
fujvj , fvivj =

fvj
fui

−gvi
fuivi +

fvi
fuj

−gvj
fujvj ,

fuivj + fujvi =
fuj

−gvj
fui

−gvi
fuivi +

fui
−gvi

fuj
−gvj

fujvj ;

(16)

here i, j take any values from 1 to m; the equations for g can be obtained by the simultaneous substitution
f ↔ g and u↔ v. For m = 1 these conditions reduce to (11).

Remark 4. Each equation (16) involves maximum two distinct indices, namely i and j. Thus, if all
traveling wave reductions of system (5) to 3D obtained by setting uk = const, vk = const, k 6= i, j, are
of Monge-Ampère type, then the full multi-dimensional system (5) must be of Monge-Ampère type as
well. This result can be reformulated geometrically as follows. Let X be a codimension two submanifold
in Gr(d, V ). Suppose that the intersection of X with every Gr(3, 5) ⊂ Gr(d, V ) is a linear section of
Gr(3, 5). Then X itself must be a linear section.

4 Concluding remarks

In this paper we have classified two-component systems of Monge-Ampère type and established their
integrability in all spacial dimensions. It would be interesting to generalise these results to the multi-
component case. Let u = (u1(x), . . . , un(x)), n ≥ 3, be functions of d independent variables x =
(x1, . . . , xd). Consider a first-order Monge-Ampère system

F 1(u1, . . . ,ud) = 0, . . . , Fn(u1, . . . ,ud) = 0,

where each F i is a linear combination of minors of the n × d Jacobian matrix of u(x). Geometrically,
such systems correspond to sections of Gr(d, V n+d) by linear spaces of codimension n. Based on the
present paper and the results of [5, 9] we can formulate the following conjectures.

• For d = 3, the integrability of a Monge-Ampère system is equivalent to its linearisability (which
is equivalent to the property that the corresponding linear space of codimension n is tangential to
Gr(3, V n+3)).

• For d ≥ 4, the integrability of a Monge-Ampère system (for n ≥ 3 it will no longer be automatic)
is equivalent to the property that the corresponding linear space of codimension n is tangential to
Gr(d, V n+d) along a submanifold which meets every Gr(3, V n+3) ⊂ Gr(d, V n+d).
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Another possible line of research is the study of two-component Monge-Ampère systems (Jacobi
systems) whose coefficients are arbitrary functions of x1, . . . , xd, u, v. Such systems can be defined by the
vanishing of 2 differential d-forms on the (d + 2)-dimensional manifold with coordinates x1, . . . , xd, u, v.
By duality, they correspond to a pair of skew-symmetric bivectors. It would be interesting to understand
whether there is a relation between integrability in the sense of this paper and bi-Poisson geometry of
Turiel [20] and Gelfand-Zakharevich [11].

We hope to return to these questions elsewhere.
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[18] J.F. Plebański and M. Przanowski, The Lagrangian for a self-dual gravitational field as a limit of
the SDYM Lagrangian, Phys. lett. A 212 (1996) 22-28.

[19] K. Takasaki, An infinite number of hidden variables in hyper-Kähler metrics, J. Math. Phys. 30, no.
7 (1989) 1515–1521.

[20] F-J. Turiel, Classification locale simultanée de deux formes symplectiques compatibles, Manuscripta
Math. 82, no. 3-4 (1994) 349-362.

14


	Introduction
	Classification of Monge-Ampère systems
	Jordan-Kronecker normal forms of skew-symmetric pencils
	Linearisability of Monge-Ampère systems for d=2, 3
	Classification of Monge-Ampère systems for d=4
	Classification of Monge-Ampère systems for d=5
	Monge-Ampère systems for arbitrary d 

	Differential geometry of Monge-Ampère systems
	Concluding remarks

