Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/254370
Заглавие документа: Hybrid Neural Network Model for Protection of Dynamic Cyber Infrastructure
Авторы: Kalinin, M.
Demidov, R.
Zegzhda, P.
Тема: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Физика
Дата публикации: 2019
Издатель: Minsk : Education and Upbringing
Библиографическое описание источника: Nonlinear Phenomena in Complex Systems. - 2019. - Vol. 22, N 4. - P. 375-382
Аннотация: The paper considers a combination of modern artificial neural networks (ANN) that solves the security relative task of intrusion prevention and vulnerabilities detection in cybernetic infrastructure with dynamic network topology. Self-organizing networks, WSN, m2m networks, IIoT, mesh networks are faced with the cyberthreats of specific character: dynamic routing failures, node isolation, DDoS attacks, traffic lack, etc. Most of them are caused by cybersecurity weaknesses: the software vulnerabilities and architectural features of dynamically reconfigured network. The existing methods of binary code analysis and intrusion detection can work with a small number of data sets, are designed for either code inspection or network checking, and are targeted for static networks with regular topology. The proposed neural model demonstrates an universal approach that deals with the cybersecurity weakness as a systems genuine property and attempts to approximate it using a hybrid deep ANN. The new ANN detects both the network security defects and binary code vulnerabilities at once with high accuracy (more than 0.97). It also shows good performance capacity processing big data of the undercontrolled network.
URI документа: https://elib.bsu.by/handle/123456789/254370
ISSN: 1561-4085
Лицензия: info:eu-repo/semantics/restrictedAccess
Располагается в коллекциях:2019. Volume 22. Number 4

Полный текст документа:
Файл Описание РазмерФормат 
v22no4p375.pdf441,96 kBAdobe PDFОткрыть
Показать полное описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.