Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/253990
Заглавие документа: Geometrothermodynamics of interface domain structures in phase transitions on 5-dimensional contact statistical manifold with pseudo-Finsler metric
Авторы: Grushevskaya, H. V.
Krylova, N. G.
Krylov, G. G.
Balan, V.
Тема: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Физика
Дата публикации: 2020
Библиографическое описание источника: Applied Sciences. Vol. 22, P.94-113 (2020).
Аннотация: Geometrothermodynamics of interface domains emerging in rst-order phase transitions modeled on a 5-dimensional statistical contact manifold is proposed in entropy representation. The supporting structure is given by a space-time regarded a hypersurface embedded in the tangent space, and its signature is provided by the Hessian of a pseudo-Finsler- type Lagrangian. A many-relaxation-time evolution of domains (nuclei) is represented a set of sections of the indicatrix surface in the tangent space at di erent pseudo-times. Within the phase-transition space-time, whose Finsler-metric signature is (􀀀 􀀀 􀀀), we say that such a section - obtained from sectioning the indicatrix by a plane transversal to pseudo- time axis - lives in the physically meaningful region of the space-time, and its geodesics are associated with a stable state of the domain structure. If the indicatrix section evolves from the physically meaningful region into a region with alternating-sign metric signature, this testi es that the domain structure associated with the geodesic loses its stability and becomes a metastable one.
URI документа: https://elib.bsu.by/handle/123456789/253990
Располагается в коллекциях:Кафедра компьютерного моделирования (статьи)

Полный текст документа:
Файл Описание РазмерФормат 
A22-gr-ZAH93.pdf2,24 MBAdobe PDFОткрыть
Показать полное описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.