Please use this identifier to cite or link to this item:
https://elib.bsu.by/handle/123456789/248678
Title: | Personal data clustering in retail marketing |
Authors: | Drozd, Pavel Adutskevich, Ivan |
Keywords: | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика |
Issue Date: | 2020 |
Publisher: | Минск : БГУ |
Citation: | Компьютерные технологии и анализ данных (CTDA’2020) : материалы II Междунар. науч.-практ. конф., Минск, 23–24 апр. 2020 г. / Белорус. гос. ун-т ; редкол.: В. В. Скакун (отв. ред.) [и др.]. – Минск : БГУ, 2020. – С. 229-233. |
Abstract: | This research proposes a technique for high-dimensional transactional data clustering analysis, which can be used by retail companies to extract meaningful marketing insights from personally identifiable information. These insights help companies to adopt their business processes to changing market conditions and objectively analyze the behavioral patterns of different types of customers. The model uses several data preprocessing algorithms that replace the original feature space with a feature space that exclusively consists of values of irreversible hash functions. The following clustering algorithm processes these hash values in a metric space. Thus, the described approach is compliant with various data regulation laws like GDPR in EU or CCF in Saudi Arabia |
Description: | Секция «Интеллектуальные технологии и системы» |
URI: | https://elib.bsu.by/handle/123456789/248678 |
ISBN: | 978-985-566-942-6 |
Appears in Collections: | 2020. Компьютерные технологии и анализ данных (CTDA’2020) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
229-233.pdf | 896,87 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.