Logo BSU

Please use this identifier to cite or link to this item: https://elib.bsu.by/handle/123456789/248678
Title: Personal data clustering in retail marketing
Authors: Drozd, Pavel
Adutskevich, Ivan
Keywords: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика
Issue Date: 2020
Publisher: Минск : БГУ
Citation: Компьютерные технологии и анализ данных (CTDA’2020) : материалы II Междунар. науч.-практ. конф., Минск, 23–24 апр. 2020 г. / Белорус. гос. ун-т ; редкол.: В. В. Скакун (отв. ред.) [и др.]. – Минск : БГУ, 2020. – С. 229-233.
Abstract: This research proposes a technique for high-dimensional transactional data clustering analysis, which can be used by retail companies to extract meaningful marketing insights from personally identifiable information. These insights help companies to adopt their business processes to changing market conditions and objectively analyze the behavioral patterns of different types of customers. The model uses several data preprocessing algorithms that replace the original feature space with a feature space that exclusively consists of values of irreversible hash functions. The following clustering algorithm processes these hash values in a metric space. Thus, the described approach is compliant with various data regulation laws like GDPR in EU or CCF in Saudi Arabia
Description: Секция «Интеллектуальные технологии и системы»
URI: https://elib.bsu.by/handle/123456789/248678
ISBN: 978-985-566-942-6
Appears in Collections:2020. Компьютерные технологии и анализ данных (CTDA’2020)

Files in This Item:
File Description SizeFormat 
229-233.pdf896,87 kBAdobe PDFView/Open
Show full item record Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.