Logo BSU

Please use this identifier to cite or link to this item: https://elib.bsu.by/handle/123456789/247017
Title: О строении элементов ортогональной группы над алгебраически замкнутым полем характеристики 2
Authors: Козел, П. Т.
Keywords: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика
Issue Date: 1995
Publisher: Минск : Універсітэцкае
Citation: Вестник Белорусского государственного университета. Сер. 1, Физика. Математика. Механика. – 1995. – № 3. – С. 69-71.
Abstract: Let O3(K, Q) be orthogonal group over the algebraically closed field K, churK = 2. It is proved that each element o in O3(K, Q) contains the elementary divisor x + 1 and if o≠e, then in addition o contains either two elementary divisors x + p and x + p-1 , p≠1 or one divisor (x + 1)2.
URI: https://elib.bsu.by/handle/123456789/247017
ISSN: 0321-0367
Licence: info:eu-repo/semantics/openAccess
Appears in Collections:1995, №3 (сентябрь)

Files in This Item:
File Description SizeFormat 
69-71.pdf131,51 kBAdobe PDFView/Open
Show full item record Google Scholar



PlumX

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.