Logo BSU

Please use this identifier to cite or link to this item: https://elib.bsu.by/handle/123456789/246694
Title: Методика сравнения методов машинного обучения в зависимости от различных параметров задачи: магистерская диссертация / Антонина Евгеньевна Вертинская; БГУ, Факультет прикладной математики и информатики, Кафедра дискретной математики и алгоритмики; науч. рук. Соболевская Е. П.
Authors: Вертинская, Антонина Евгеньевна
Keywords: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика
ЭБ БГУ::ОБЩЕСТВЕННЫЕ НАУКИ::Информатика
Issue Date: 2020
Publisher: БГУ, ФПМИ, Кафедра дискретной математики и алгоритмики
Abstract: Магистерская диссертация, 41 страница, 18 рисунков, 10 таблиц, 16 источников. МАШИННОЕ ОБУЧЕНИЕ, АЛГОРИТМЫ КЛАССИФИКАЦИИ, БЕНЧМАРК-ТЕСТ, PYSPARK.ML, SKLEARN, РЕГРЕССИОННЫЕ МОДЕЛИ. Объект исследования–алгоритмыклассификациивмашинномобучении, а также проблема выбора подходящего алгоритма взависимостиотпараметров задачи. Цель работы – сравнения методов машинного обучения по таким критериям, как качество предсказаний, загрузка процессора, использование памяти и диска, а также разработка методики выбора подходящего алгоритма согласно требованиям задачи. Методы исследования ​ – эксперимент, тестирование, анализ, сравнение. Результаты – методика сравнения и выбора подходящего алгоритма машинного обучения в зависимости от характеристик и требований задачи. Результатом применения методики является рекомендатор алгоритмов классификации библиотек Pyspark.ML и sklearn на базе регрессионных моделей, которые предсказывают метрики качества и производительности. Область применения – сферы, где использование методов машинного обучения может быть полезно, однако такой подход недостаточно развит либо стоит больших затрат.
URI: https://elib.bsu.by/handle/123456789/246694
Appears in Collections:1-31 81 09 - "Алгоритмы и системы обработки больших объемов информации"

Files in This Item:
File Description SizeFormat 
АСОБОИ_Вертинская_2020.pdf1,15 MBAdobe PDFView/Open
Show full item record Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.