Logo BSU

Please use this identifier to cite or link to this item: https://elib.bsu.by/handle/123456789/233385
Title: Drift parameter estimation in Gaussian regression model by continuous and discrete observations
Authors: Ralchenko, K.
Keywords: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика
ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика
Issue Date: 2019
Publisher: Minsk : BSU
Citation: Computer Data Analysis and Modeling: Stochastics and Data Science : Proc. of the Twelfth Intern. Conf., Minsk, Sept. 18-22, 2019. – Minsk : BSU, 2019. – P. 285-288.
Abstract: The paper is devoted to the maximum likelihood estimation in the regression model of the form Xt = θG(t) + Bt, where B is a Gaussian process, G(t) is a known function, and θ is an unknown drift parameter. The estimation techniques for the cases of discrete-time and continuous-time observations are presented. As examples, models with fractional Brownian motion, sub-fractional Brownian motion and two independent fractional Brownian motions are considered
URI: http://elib.bsu.by/handle/123456789/233385
ISBN: 978-985-566-811-5
Appears in Collections:2019. Computer Data Analysis and Modeling : Stochastics and Data Science

Files in This Item:
File Description SizeFormat 
285-288.pdf417,47 kBAdobe PDFView/Open
Show full item record Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.