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Abstract

The paper is devoted to the maximum likelihood estimation in the regression
model of the form Xt = θG(t) + Bt, where B is a Gaussian process, G(t) is a
known function, and θ is an unknown drift parameter. The estimation techniques
for the cases of discrete-time and continuous-time observations are presented.
As examples, models with fractional Brownian motion, sub-fractional Brownian
motion and two independent fractional Brownian motions are considered.
Keywords: data science, fractional Brownian motion, discrete observation, con-
tinuous observation, drift parameter

1 Introduction

We study rather general model where the noise is represented by a centered Gaussian
process B = {Bt, t ≥ 0} with known covariance function, B0 = 0. We assume that
all �nite-dimensional distributions of the process {Bt, t > 0} are multivariate normal
distributions with nonsingular covariance matrices. We observe the process Xt with a
drift θG(t), that is,

Xt = θG(t) +Bt,

where G(t) =
∫ t

0
g(s) ds, and g ∈ L1[0, t] for any t > 0. The paper is devoted to the

estimation of the parameter θ by observations of the process X. We consider the MLEs
for discrete and continuous schemes of observations. The results presented are based
on the recent articles [2, 1, 3].

2 Drift parameter estimator for discrete-time

observations

Let the process X be observed at the points 0 < t1 < t2 < . . . < tN . Then the vector
of increments

∆X(N) = (Xt1 , Xt2 −Xt1 , . . . , XtN −XtN−1
)>

is a one-to-one function of the observations. We assume in this section that the in-
equality G(tk) 6= 0 holds at least for one k.

Evidently, vector ∆X(N) has Gaussian distribution N (θ∆G(N),Γ(N)), where

∆G(N) =
(
G(t1), G(t2)−G(t1), . . . , G(tN)−G(tN−1)

)>
.
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Let Γ(N) be the covariance matrix of the vector

∆B(N) = (Bt1 , Bt2 −Bt1 , . . . , BtN −BtN−1
)>.

Then one can take the density of the distribution of the vector ∆X(N) for a given θ
w. r. t. the density for θ = 0 as a likelihood function:

L(N)(θ) = exp

{
θ(∆G(N))>(Γ(N))−1∆X(N) − θ2

2
(∆G(N))>(Γ(N))−1∆G(N)

}
.

The corresponding MLE equals

θ̂(N) =

(
∆G(N)

)> (
Γ(N)

)−1
∆X(N)

(∆G(N))
>

(Γ(N))
−1

∆G(N)
. (1)

Theorem 1 (Properties of the discrete-time MLE [2]). 1. The estimator θ̂(N) is unbi-
ased and normally distributed:

θ̂(N) − θ ' N
(

0,
1

(∆G(N))>(Γ(N))−1∆G(N)

)
.

2. Assume that
varBt

G2(t)
→ 0, as t→∞.

If tN → ∞, as N → ∞, then the discrete-time MLE θ̂(N) converges to θ as N → ∞
almost surely and in L2(Ω).

3 Drift parameter estimator for continuous-time

observations

In this section we suppose that the process Xt is observed on the whole interval [0, T ].
We investigate MLE for the parameter θ based on these observations.

Let 〈f, g〉 =
∫ T

0
f(t)g(t) dt. Assume that the function G and the process B satisfy

the following conditions.

(A) There exists a linear self-adjoint operator Γ = ΓT : L2[0, T ]→ L2[0, T ] such that

cov(Xs, Xt) = EBsBt =

∫ t

0

ΓT 1[0,s](u) du = 〈ΓT 1[0,s], 1[0,t]〉.

(B) The drift function G is not identically zero, and in its representation G(t) =∫ t
0
g(s) ds the function g ∈ L2[0, T ].

(C) There exists a function hT ∈ L2[0, T ] such that g = ΓhT .
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Note that under assumption (A) the covariance between integrals of deterministic func-
tions f ∈ L2[0, T ] and g ∈ L2[0, T ] w. r. t. the process B equals

E

∫ T

0

f(s) dBs

∫ T

0

g(t) dBt = 〈ΓTf, g〉.

Theorem 2 (Likelihood function and continuous-time MLE [2]). Let T be �xed, as-
sumptions (A)�(C) hold. Then one can choose

L(θ) = exp

{
θ

∫ T

0

hT (s) dXs −
θ2

2

∫ T

0

g(s)hT (s) ds

}
(2)

as a likelihood function. The MLE equals

θ̂T =

∫ T
0
hT (s) dXs∫ T

0
g(s)hT (s) ds

. (3)

It is unbiased and normally distributed:

θ̂T − θ ' N
(

0,
1∫ T

0
g(s)hT (s) ds

)
.

Theorem 3 (Consistency of the continuous-time MLE [2]). Assume that assumptions
(A)�(C) hold for all T > 0. If, additionally,

lim inf
t→∞

varBt

G(t)2
= 0,

then the estimator θ̂T converges to θ as T →∞ almost surely and in mean square.

Theorem 4 (Relations between discrete and continuous MLEs [2]). Let the assump-
tions of Theorem 2 hold. Construct the estimator θ̂(N) from (1) by observations XTk/N ,
k = 1, . . . , N . Then

1) the estimator θ̂(N) converges to θ̂T in mean square, as N →∞,

2) the estimator θ̂(2n) converges to θ̂T almost surely, as n→∞.

4 Application of estimators to various models

4.1 Model with fractional Brownian motion and power drift

Let 0 < H < 1 and α > −1. Consider the process

Xt = θtα+1 +BH
t , (4)

where BH =
{
BH
t , t ≥ 0

}
is a fractional Brownian motion with Hurst index H.

Theorem 5 ( [2]). If α > H − 1, the model (4) satis�es the conditions of Theorem 1.
The estimator θ̂(N) in the model (4) is L2-consistent and strongly consistent (provided
that limN→∞ tN = +∞). If α > 2H − 3

2
, the conditions of Theorems 2, 3 and 4, are

satis�ed. The estimator θ̂T is L2-consistent and strongly consistent. For �xed T , it can
be approximated by discrete-sample estimator in mean-square sense.
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4.2 Model with subfractional Brownian motion

Let 0 < H < 1. Consider the model

Xt = θt+ B̃H
t , (5)

where B̃H =
{
B̃H
t , t ≥ 0

}
is a subfractional Brownian motion with Hurst parameter H.

Theorem 6 ( [2]). Under condition tN → +∞ as N → ∞, the estimator θ̂(N) in the
model (5) is L2-consistent and strongly consistent. If 1

2
< H < 3

4
, then the random

process B̃H satis�es Theorems 2, 3, and 4. As the result, L(θ) de�ned in (2) is the
likelihood function in the model (5), and θ̂T de�ned in (3) is the MLE. The estimator is
L2-consistent and strongly consistent. For �xed T , it can be approximated by discrete-
sample estimator in mean-square sense.

4.3 The model with two independent fractional Brownian mo-

tions

Consider the following model:

Xt = θt+BH1
t +BH2

t , (6)

where BH1 and BH2 are two independent fractional Brownian motion with Hurst indices
H1, H2 ∈ (1

2
, 1).

Theorem 7 ( [3]). Under condition tN → +∞ as N → ∞, the estimator θ̂(N) in the
model (6) is L2-consistent and strongly consistent. If H1 ∈ (1/2, 3/4] and H2 ∈ (H1, 1),
then the random process BH1 +BH2 satis�es Theorems 2, 3, and 4. As the result, L(θ)
de�ned in (2) is the likelihood function in the model (6), and θ̂T is the maximum
likelihood estimator. The estimator is L2-consistent and strongly consistent. For �xed
T , it can be approximated by discrete-sample estimator in mean-square sense.
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