Logo BSU

Please use this identifier to cite or link to this item: https://elib.bsu.by/handle/123456789/233373
Title: Nonparametric modeling of multidimensional memoryless processes
Authors: Medvedev, A. V.
Tereshina, A. V.
Yareshenko, D. I.
Keywords: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика
ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика
Issue Date: 2019
Publisher: Minsk : BSU
Citation: Computer Data Analysis and Modeling: Stochastics and Data Science : Proc. of the Twelfth Intern. Conf., Minsk, Sept. 18-22, 2019. – Minsk : BSU, 2019. – P. 237-241.
Abstract: The report considers the case when multidimensional memoryless objects have an unknown stochastic dependence between output variables, a training sample is available. Such processes are called T-processes. Constructing a model for such a process leads to solve a system of implicit functions. Moreover, the form of these functions is unknown up to parameters. Therefore, practical application of generally accepted parametric identification theory is not possible. In this case, we will use a piecemeal approach to predict output variables from known input variables
URI: http://elib.bsu.by/handle/123456789/233373
ISBN: 978-985-566-811-5
Appears in Collections:2019. Computer Data Analysis and Modeling : Stochastics and Data Science

Files in This Item:
File Description SizeFormat 
237-241.pdf394,7 kBAdobe PDFView/Open
Show full item record Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.