Please use this identifier to cite or link to this item:
https://elib.bsu.by/handle/123456789/233347
Title: | Recent results on the total variation distance |
Authors: | Zubkov, A. M. |
Keywords: | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика |
Issue Date: | 2019 |
Publisher: | Minsk : BSU |
Citation: | Computer Data Analysis and Modeling: Stochastics and Data Science : Proc. of the Twelfth Intern. Conf., Minsk, Sept. 18-22, 2019. – Minsk : BSU, 2019. – P. 128-131. |
Abstract: | Let (X 1 ,...,X n ) and (Y 1 ,...,Y n ) be two sets of independent discrete random variables. Explicit upper and lower bounds for the total variation distance between distributions of these sets are obtained in terms of some functions of distributions of separate components X k and Y k , k = 1,...,n. The cases of identical (inside each set) and arbitrary distributions of random variables are considered. Results may be used to estimate the sample sizes necessary or sufficient for testing two hypotheses with given sum of error probabilities. |
URI: | http://elib.bsu.by/handle/123456789/233347 |
ISBN: | 978-985-566-811-5 |
Appears in Collections: | 2019. Computer Data Analysis and Modeling : Stochastics and Data Science |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
128-131.pdf | 339,4 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.