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Abstract

Let (X1, . . . , Xn) and (Y1, . . . , Yn) be two sets of independent discrete ran-
dom variables. Explicit upper and lower bounds for the total variation distance
between distributions of these sets are obtained in terms of some functions of
distributions of separate components Xk and Yk, k = 1, . . . , n. The cases of
identical (inside each set) and arbitrary distributions of random variables are
considered. Results may be used to estimate the sample sizes necessary or suffi-
cient for testing two hypotheses with given sum of error probabilities.
Keywords: data science, total variation distance, hypotheses testing

1 Introduction

Let S be a countable set; let P = {ps}s∈S and Q = {qs}s∈S be probability distributions
of random variables X and Y with values in S correspondingly. The total variation
distance between probability distributions P and Q (or random variables X and Y ) is
defined by

dTV(P,Q) = dTV(X, Y )
def
= sup

A⊆S
|P (A)−Q(A)| = 1

2

∑
s∈S
|ps − qs|. (1)

The value 1−dTV(P,Q) is an exact low bound for the sum of error probabilities of two
kinds in a problem of testing two simple hypothesis on the observation Z:

H0 : Z has distribution P ,
H1 : Z has distribution Q.
So, estimates of total variation distance between distributions of sets of independent

random variables (X1, . . . , Xn) and (Y1, . . . , Yn) considered as a function on n may
be used to draw objective conclusions on the sample size necessary or sufficient to
distinguish simple hypotheses on such distributions.

Recently the upper and lower estimates of the total variation distance between
samples (X1, . . . , Xn) and (Y1, . . . , Yn) of independent identically distributed observa-
tions were obtained in [1, 2]. Under some conditions these estimates has the order
dtv(X1, Y1)

√
n with coefficients depending on the distributions of X1 and Y1. In the

general case the upper bound cannot be smaller than dtv(X1, Y1)n.
Here we state lower and upper estimates of the total variation distance between the

distributions of sets (X1, . . . , Xn) and (Y1, . . . , Yn) of independent random variables for
cases of identically (within each set) or arbitrary distributed random variables. The
domains of applicability of our inequalities are wider than that of [1, 2].
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2 Identically distributed components

It is easy to see that if P and Q are probability distributions on a countable set S and
CP,Q = {x ∈ S : P (x) > Q(x)}, then dtv(P,Q) =

∑
x∈CP,Q(P (x)−Q(x)). Put

v = v(P,Q) = min{P (CP,Q), Q(CP,Q), P (Ω \ CP,Q), Q(Ω \ CP,Q)},

then 0 < v ≤ 1
2
(1− dtv(P,Q)), and these estimates are best possible.

Theorem 1. Let X1, . . . , Xn be independent random variables with the same distri-
bution P on the countable set S, Y1, . . . , Yn be independent random variables with the
same distribution Q on S and dtv(P,Q) = ε > 0. Then

dtv((X1, . . . , Xn), (Y1, . . . , Yn)) ≥ e−4/nv(1−v)

2(1 + 2/n)

√
v

1− v
(
Φ
(
2ε
√
n
)
− 1

2

)
,

where v = v(P,Q) ∈ [ 2
n
, n−1

2n
) and Φ(x) = 1√

2π

∫ x
−∞ e

−u2/2du is a standard normal
distribution function.

Remark 1. The difference Φ (2ε
√
n)− 1

2
does not exceed 1

2
and is equivalent to ε

√
2n/π

for ε
√
n→ 0. The estimate of theorem 1 cannot be larger than 1

4
; for n > 2ε−2 ln 2 the

known low estimate (see, e. g., [3, 4]])

dtv((X1, . . . , Xn), (Y1, . . . , Yn)) ≥ 1− 2e−nε
2/2,

is nontrivial and tends to 1 as n→∞.

Theorem 2. Let X1, X2, . . . and Y1, Y2, . . . be independent random variables taking
values 1, . . . , N :

P{Xt = k} = pk, P{Yt = k} = rk, k ∈ {1, . . . , N}, t = 1, 2 . . . , dtv(X1, Y1) = ε.

Then

dtv((X1, . . . , Xn), (Y1, . . . , Yn)) ≤ ε
√
n

(
1√

SX +
√
SX + ε

+
1√

SY +
√
SY + ε

)
,

where SX =
∑

k : pk<rk
pk, SY =

∑
k : rk<pk

rk.

Remark 2. Upper bound may be very large if SX or SY is very small, but in such
cases the total variation distance between (X1, . . . , Xn) and (Y1, . . . , Yn) also may be
large. For example, if N = 3, p1 = r2 = ε, p2 = r1 = 0, p3 = q3, then dtv(X1, Y1) =
ε, SX = SY = 0 and

dtv((X1, . . . , Xn), (Y1, . . . , Yn)) ≥ 1

2
(P{∃k : Xk = 1}+ P{∃k : Yk = 2}) ≥ nε(1− ε)n−1,

upper bound of theorem 2 in this case equals 2
√
nε.

Theorems 1 and 2 were proved in [6]. Another form of theorem 2 may be found
in [5].
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3 Arbitrary distributions of components

Theorem 3. Let X1, X2, . . . and Y1, Y2, . . . be independent random variables taking
values 1, . . . , N :

P{Xk = j} = p
(k)
j , P{Yk = j} = r

(k)
j , j ∈ {1, . . . , N}, k = 1, 2 . . . , n,

and ρk = ρ(Xk, Yk) = 1
2

∑N
j=1 |p

(k)
j − r(k)

j | > 0 (k = 1, . . . , n), S =
∑n

k=1 ρk. Then

dtv((X1, . . . , Xn), (Y1, . . . , Yn)) ≥ S

3(2 + S +
√

2n ln(n/S))
.

If ρ1 = . . . = ρn = ρ < 1, then the estimate takes the form

dtv((X1, . . . , Xn), (Y1, . . . , Yn))≥ nρ

3
(

2+nρ+
√

2n ln(1
ρ
)
)=

ρ
√
n

3
(

2√
n

+ρ
√
n+
√

2 ln(1
ρ
)
) .

Modifying the proof it is possible to obtain low bound which is arbitrary close to 1 for
fixed ρ and sufficiently large n.

Theorem 4. Let X1, X2, . . . and Y1, Y2, . . . be independent random variables taking
values 1, . . . , N :

P{Xt = k} = p
(t)
k , P{Yt = k} = r

(t)
k , k ∈ {1, . . . , N}, t = 1, 2 . . . , n,

ρt = ρ(Xt, Yt) = 1
2

∑N
k=1 |p

(t)
k − r

(t)
k |, t = 1, . . . , n, and

min
1≤t≤n

min{S(t)
X , S

(t)
Y } ≥ δ > 0, S

(t)
X =

∑
k : p

(t)
k <r

(t)
k

p
(t)
k , S

(t)
Y =

∑
k : r

(t)
k <p

(t)
k

r
(t)
k .

Then

ρ((X1, . . . , Xn), (Y1, . . . , Yn)) ≤ 1√
2δ

√∑n

t=1
ρ2
t .

Condition min1≤t≤n min{SX , SY } ≥ δ > 0 exclude cases mentioned in Remark 2.
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