Logo BSU

2019. Computer Data Analysis and Modeling : Stochastics and Data Science : [74] Главная страница коллекции Статистика

Logo

This collection of papers includes proceedings of the Twelfth International Conference “Computer Data Analysis and Modeling: Stochastics and Data Science” organized by the Belarusian State University and held in September 2019 in Minsk. Papers are reviewed by qualified researchers from Austria, Belarus, Lithuania, Russia, Ukraine.

The papers are devoted to the topical problems: robust and nonparametric data analysis; statistical analysis of time series and forecasting; multivariate data analysis; design of experiments; probability and statistical analysis of discrete data; econometric analysis and modeling; survey analysis and official statistics; computer intensive methods, algorithms and software; computer data analysis in applications.

For specialists who work in the fields of mathematical statistics and its applications, computer data analysis, data science and statistical software development.

При полном или частичном использовании материалов ссылка на сайт Электронной библиотеки БГУ (www.elib.bsu.by) обязательна.

Ресурсы коллекции (Сортировка по Дата поступления в По убыванию порядке): 41 по 60 из 74
Предварительный просмотрДата выпускаЗаглавиеАвтор(ы)
2019Probabilistic data analysis for predicting mean time before critical integrity losses of complex system when explicit quantitative requirements to integrity are not specifiedKostogryzov, A.; Nistratov, A.; Nistratov, G.
2019About the processes in the changing fractional dimension spaceKornet, M. E.; Medvedev, A. V.; Mihov, E. D.
2019New method to minimize the stress in multidimensional scalingDzemyda, G.; Sabaliauskas, M.
2019Influence of the training set on the prediction stability in estimation of acute pancreatitis severityMangalova, E.; Chubarova, O.; Melekh, D.
2019Detecting changes in the dependence structure of a time seriesDürre, A.; Fried, R.
2019Statistical analysis of count conditionally nonlinear autoregressive time series by frequencies-based estimatorsKharin, Yu. S.; Kislach, M. I.
2019Bayesian binomial regression model with a latent Gaussian field for analysis of epigenetic dataHubin, A.; Storvik, G.; Grini, P.; Butenko, M.
2019On some new aspects in acquisition and analysis of brain electrical activityKolchin, A. V.; Ionkina, H. G.
2019Simulation of adaptive control system with conflict flows of non-homogeneous requestsFedotkin, M. A.; Kudryavtsev, E. V.
2019On statistical estimation of transition probabilities matrix for Markov chain under incomplete observationsKharin, Yu. S.; Dernakova, O. V.
2019Performance and robustness in sequential testing of hypothesesKharin, A. Yu.; Ton That Tu
2019Expected error rate in linear discrimination of balanced spatial Gaussian time seriesKaraliute, M.; Ducinskas, K.; Saltyte-Vaisiauske, L.
2019Probabilistic approach in factorization by elliptic curve methodDermenzhy, I.; Vostrov, G.
2019On parameter estimation of double-censored stationary Gaussian time seriesBadziahin, I. A.
2019Predicting the success of antegrade chronic total occlusion recanalization using machine learningAbramovich, M. S.; Kozlovsky, V. V.; Stelmashok, V. I.; Polonetsky, O. L.
2019Tourism in Belarus: indicators, satellite account and surveysBokun, N.
2019Approximate formulas for expectation of functionals from solution to linear Skorohod stochastic differential equationEgorov, A. D.; Zherelo, A. V.
2019Modeling baltic market indices: a comparison of modelsBelovas, I.
2019Robust analogs of the Qn-estimate of scale for the Student distributionsShevlyakov, G. L.; Shirokov, I. S.; Litvinova, V. G.
2019Estimation of conditional survival function under dependent random censored dataAbdushukurov, A. A.
Ресурсы коллекции (Сортировка по Дата поступления в По убыванию порядке): 41 по 60 из 74
Подпишитесь на эту коллекцию, чтобы ежедневно получать уведомления по электронной почте о новых поступлениях (для зарегистрированных пользователей) RSS Feed RSS Feed RSS Feed