Logo BSU

Please use this identifier to cite or link to this item: https://elib.bsu.by/handle/123456789/159772
Title: Comparison of image similarity functions and sampling algorithms in vision-based particle filter for UAV localization
Authors: Jurevicius, R.
Marcinkevicius, V.
Taujanskas, V.
Keywords: ЭБ БГУ::ОБЩЕСТВЕННЫЕ НАУКИ::Информатика
ЭБ БГУ::ОБЩЕСТВЕННЫЕ НАУКИ::Информатика
Issue Date: 25-Oct-2016
Publisher: Минск: БГУ
Abstract: This paper analyses parts of a computer vision based particle filter for Unmanned Air Vehicle (abbr. UAV) localization. Localization is done by matching camera image from downward looking camera on a UAV to a previously known orthophoto map. Few image matching functions are compared, to select the best fit matching coefficient for the case. Normalized correlation-coefficient with min-max 110 normalization was used to calculate the most fit probability density function. Few sampling techniques are reviewed, implemented and compared to achieve UAV localization in a GPS denied environment. Kueller-Leiblach distance (abbr. KLD) sampling technique has shown the best localization success rate (96 %) with lowest computational requirement (about 1,7 times faster than other sampling algorithms).
URI: http://elib.bsu.by/handle/123456789/159772
ISBN: 978-985-566-369-1
Appears in Collections:Секция 1. АЭРОКОСМИЧЕСКИЕ ИНФОРМАЦИОННЫЕ И ТЕЛЕКОММУКАЦИОННЫЕ СИТЕМЫ И ТЕХНОЛОГИИ

Files in This Item:
File Description SizeFormat 
Юревичюс_Мартинкевичюс_Тауянскас.pdf772,8 kBAdobe PDFView/Open
Show full item record Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.