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В статье анализируются части фильтра на основе частиц для локализации 
беспилотного летательного аппарата (БЛА). Локализация осуществляется путем 
сопоставления изображения с камеры БЛА с ранее известной картой ортофото-
планов. Функции сопоставления изображения сравниваются, чтобы выбрать 
наиболее пригодный коэффициент для рассматриваемого случая. Для вычисле-
ния наиболее подходящей плотности вероятностей использовался нормализо-
ванный коэффициент корреляции с минимаксной нормализацией. Некоторые 
выборочные методы отбора проб проанализированы, реализованы и сравнены 
для случая, когда БЛА достигает запрещенного для GPS места. Метод отбора 
проб, использующий расстояние Kueller-Leiblach (сокр. KLD) показал наилуч-
шую степень успеха локализации (96%) при низких вычислительных затратах 
(примерно в 1,7 раза быстрее, чем другие алгоритмы выборки). 

Ключевые слова: фильтр частиц, локализация, отбор проб, беспилотный ле-
тательный аппарат, сравнение изображений, KLD-выборки. 
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This paper analyses parts of a computer vision based particle filter for 
Unmanned Air Vehicle (abbr. UAV) localization. Localization is done by matching 
camera image from downward looking camera on a UAV to a previously known 
orthophoto map. Few image matching functions are compared, to select the best fit 
matching coefficient for the case. Normalized correlation-coefficient with min-max 
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normalization was used to calculate the most fit probability density function. Few 

sampling techniques are reviewed, implemented and compared to achieve UAV 

localization in a GPS denied environment. Kueller-Leiblach distance (abbr. KLD) 

sampling technique has shown the best localization success rate (96 %) with lowest 

computational requirement (about 1,7 times faster than other sampling algorithms).  

Keywords: particle filter; localisation; sampling; UAV; image matching; kld-

sampling. 

INTRODUCTION 

GPS signal used for UAV navigation is vulnerable to signal jamming and spoofing   

[7]. Localization, the process of pose estimation relatively to known map, may solve the 

problem of navigation without GPS signal. Particle filters have solved localization problem 

for autonomous robots [10] using laser scanners and panoramic vision [1].  

Downward looking camera on a UAV may be used to solve pose estimation problem   

[5, 8] in combination with visual odometry and sensor data. Similar problem of mobile robot 

localization was solved using Monte Carlo localization in [12]. Particle filter mixed with 

wheel odometry approach was used in [4], where a mobile robot used ceiling mosaic and a 

upward facing camera to localize it‘s position using particle filters. Stereo vision systems 

have been successfully applied to low/medium size UAVs, but the problem of two cameras 

is the rigid distance between them, which limits the useful altitude range [3]. Computer 

vision techniques were demonstrated to be able to solve „kidnapped robot problem― (or 

global localization problem) using visual odometry and Extended Kalman-filter based 

SLAM in [3]. This solution relies on natural landmark seen in the which are used calculate 

homography, recovering the flight. 

VISION-BASED  PARTICLE  FILTER  LOCALIZATION 

Motion model is used to estimate 

aircraft pose according to UAV sensor 

data. The search space is narrowed down 

to pseudo-planar movement using only 

three parameters (see figure 1), where 

 yawt yxz ,,=
 

is the aircraft pose on 

time t  and yaw  is the UAV heading 

angle. Motion model implementations for 

movement in planar space can be found in 

[11]. Template matching technique is used 

to calculate similarity between image viewed by the camera and cropped image from map on 

the hypothesized UAV pose. Three popular template matching functions from OpenCV [2] 

library were adapted to calculate image similarity R  between camera image T  and cropped 

map image I , using these formula: 

 

Fig. 1. Simplified planar motion model for UAV 

on a two-dimensional map 
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Normalized sum of squared differences (SQDIFF): .
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Normalized cross-correlation (CCORR): .
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Normalized correlation coefficient (CCOEFF): ,
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and w, h image dimensions (width and height). 

 

Particle filter localization (or Monte Carlo localization) is a recursive Bayes filter that 

estimates the posterior distribution of robot poses conditioned on sensor data [12]. The 

probability distribution of the a particle is described in the form ),|( 1:11:0  ttt mzzp , where tz is 

robot pose on time t and tm is sensor data (may be IMU, barometer, wind speed and other 

data used for dead-reckoning) on time t. Probability density function for the particles is 

obtained by calculating image similarity R  with formulas RSQD, RCCORR, RCCOEFF.  

To map the similarity to probability space we use simple min-max normalization 

=
j min

max min

R R
b

R R




, then we can represent the UAV pose belief as 

),,|(=)( 1:11:11:0  ttttt bmzzpzbel . The next iteration of particle filter begins after some time 

by estimating the UAV motion, capturing new imagery from camera and selecting particles 

from previous iteration. This part of the particle filter is called sampling. 

Sampling is the stage of the Particle Filter when particles are re-sampled according to 

their belief. Each iteration resamples particles to find the most plausible UAV location over 

time. Few sampling techniques were selected for comparison  Rejection Sampling [13], 

Importance Sampling [9] and KLD-Sampling [6].The principle of rejection sampling is to 

evaluate randomly selected particle to survive with a probability equal to it’s belief. 

Importance sampling was introduced to deal with higher uncertainty in the measurements. 

This sampling technique uses weight iw  (calculated by normalising all probabilities) to 

resample the particles. The higher particle belief is, the larger weight it gets and a particle is 

more likely to be resampled. KLD-sampling is an extension of the importance sampling. It 

uses Kueller  Leiblach distance to dynamically calculate required number of particles for 

the filter without the loss of accuracy. 
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EXPERIMENTAL  RESULTS 

Experiments are made in simulated environment 

where the flight of UAV is simulated in a planar 

coordinates of the map. Grayscaled map and images are 

used to speed up image matching procedure. The map is 

located in a suburb region of Lentvaris, Lithuania. An 

example search of UAV location is presented in figure 2, 

where 500 particle are scattered uniformly over an area of 

a map (fig. 2, a) to localize the true UAV pose. Images of 

a hypothesized location are cropped out of the map, re-

scaled and simulate real flight imaging conditions by 

adding noise. To compare the image matching 

coefficients, we generate a set of 500 particle hypothesis 

and calculate image matching with the image of the 

ground truth location to preview the calculated 

coefficients.  

The effectiveness of sampling algorithm is measured 

by percentage of successful convergences to the ground 

truth pose (best particle is not further from ground truth 

then 15 meters/50 pixels) after 50 iterations. 100 start 

locations are randomly selected and each sampling 

algorithm is evaluated using same starting conditions  350 

particles are uniformly distributed in a radius of 250 meter 

(833 in pixels) of ground truth position (worst case GPS 

accuracy is 156 meters). Image size of 400 × 400 was 

selected to be cropped out of the map, imitating a flight at 

around 100 meter altitude.  

COMPARISON  OF  IMAGE  MATCHING  FUNCTIONS 

CCORR function (see fig. 3, b and 3, e) does not distinguish any poses from the 

common, there are many peak values which will survive during localization and it may take 

considerable time to filter out the final pose. SQDIFF function (see fig. 3, c and 3, f) contains 

a lot of zero values, which will certainly be omitted during sampling. This causes a very 

early pose convergation. Particle Filter requires some iterations to collect enough evidence 

over time to select a proper pose. Meanwhile, CCOEFF (see fig. 3, a and 3, d) has few high 

probability particles and others are in a low probability zone. This allows ensure survival of 

the very probable locations, but other locations are still left for consideration with lower 

probability. The dashed vertical lines marks 5 nearest to ground truth particles. Correlation 

coefficient (CCOEFF) with min-max normalization will be used for experiments in the next 

section. 

 
a: Initial search 

 
b: Particles at final location 

Fig. 2. Hypothesized UAV 

locations on the known map 
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 a  CCOEFF          b  CCORR c  SQDIFF 

 

 d  min-max CCOEFF   e  min-max CCORR f  min-max SQDIFF 

Fig. 3. Image similarity coefficients 

SAMPLING ALGORITHM COMPARISON 

Table shows the experimental results of the algorithm comparison. Ending particle 

count is the average particle count at the last iteration of the algorithm. Rejection and 

importance sampling algorithms has fixed particle counts and the KLD-sampling particle 

count is variable over time. Average time is calculated by adding up execution time of each 

100 flight starting point tests. Experiments were concluded on a Intel i5-4200M processor 

with 3,1 GHz operating frequency. The average duration is the same for rejection and 

importance sampling, but KLD is faster with the similar, but slightly better success rate. 

KLD sampling uses more than 3 times less particles after 50 iterations.  

Comparison of sampling algorithms 

 Sampling   End particle count   Average duration, s   Successful localization  

 Rejection   350   235   87 %  

 Importance   350   234   94 %  

 KLD   83.8   131   96 %  

CONCLUSIONS  AND  FUTURE  WORK 

Comparison of image matching functions and sampling algorithms used in Particle 

Filter localization was presented in this paper. Image matching function - correlation 

coefficient (after min-max normalization) was identified to be most fit for particle belief 

representation. KLD sampling technique has proved to be as accurate as other sampling 

techniques, but by adapting particle count reduces computational load when it is not 

necessary. KLD sampling technique has shown to be at least 1,7x times faster than other 
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sampling techniques with comparable localization success rate. The experiments with KLD 

sampling is planned with real life flight imagery and UAV sensor data. Localized pose with 

GPS location and other vision based localization techniques. 
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