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B cratbe aHanu3upyroTcs 4acTd (UIbTPa HA OCHOBE YAaCTHUI[ AJIS JIOKAIU3ALUU
OecnimiioTHOTO JetartenbHoro ammapata (bJIA). Jlokanuzamust ocyniecTBiIseTcs: myTemM
cornocTtaBieHus: u3o0paxxenust ¢ kamepsl BJIA ¢ paHee u3BecTHOM KapToit opTOdoTO-
w1aHoB. DYHKIMM CONOCTaBICHUS H300pakeHUs CpPaBHUBAIOTCS, 4YTOOBI BBIOpAThH
HauboJsiee MPUTOAHBIN K03(DUIIMEHT [T paccMaTpuBaeMoro ciyvas. J{ias Belumcie-
HUS HamOoyee TOAXO/AIICH IUIOTHOCTH BEPOATHOCTEH HCIOIB30BAJICS HOPMAIIN30-
BaHHBIN K03()(UIIMEHT KOoppesnsuuu ¢ MUHUMakcHOW Hopmanu3zanuei. Hexoropsie
BBIOOPOYHBIE METO/IbI 0TOOpa Mpo0 MpoaHaIW3UPOBAaHbI, PEATTU30BAHBI U CPABHEHBI
s ciydasi, korna BJIA pocruraer 3ampemiennoro s GPS mecta. Merox or6opa
po6, ucmone3ytoumii paccrosaue Kueller-Leiblach (coxp. KLD) noka3zan Haumyd-
LIyI0 CTENEeHb ycmexa Jiokann3zauuu (96%) mpu HU3KUX BBIYUCIUTENBHBIX 3aTpaTax
(mpumepHo B 1,7 paza ObicTpee, 4eM JIpyrue aaropuTMbl BEIOOPKH).

Knrouesvie crnosa: punsTp yacTull, ToKamu3aus, oroop npood, OeCcuIOTHBIH Jie-
TaTEJIbHBIN anmnapat, cpaBHeHHe n3o0paxenuii, KLD-BbIOOpKH.
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This paper analyses parts of a computer vision based particle filter for
Unmanned Air Vehicle (abbr. UAV) localization. Localization is done by matching
camera image from downward looking camera on a UAV to a previously known
orthophoto map. Few image matching functions are compared, to select the best fit
matching coefficient for the case. Normalized correlation-coefficient with min-max
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normalization was used to calculate the most fit probability density function. Few
sampling techniques are reviewed, implemented and compared to achieve UAV
localization in a GPS denied environment. Kueller-Leiblach distance (abbr. KLD)
sampling technique has shown the best localization success rate (96 %) with lowest
computational requirement (about 1,7 times faster than other sampling algorithms).

Keywords: particle filter; localisation; sampling; UAV; image matching; kld-
sampling.

INTRODUCTION

GPS signal used for UAV navigation is vulnerable to signal jamming and spoofing
[7]. Localization, the process of pose estimation relatively to known map, may solve the
problem of navigation without GPS signal. Particle filters have solved localization problem
for autonomous robots [10] using laser scanners and panoramic vision [1].

Downward looking camera on a UAV may be used to solve pose estimation problem
[5, 8] in combination with visual odometry and sensor data. Similar problem of mobile robot
localization was solved using Monte Carlo localization in [12]. Particle filter mixed with
wheel odometry approach was used in [4], where a mobile robot used ceiling mosaic and a
upward facing camera to localize it‘s position using particle filters. Stereo vision systems
have been successfully applied to low/medium size UAVSs, but the problem of two cameras
is the rigid distance between them, which limits the useful altitude range [3]. Computer
vision techniques were demonstrated to be able to solve ,,kidnapped robot problem® (or
global localization problem) using visual odometry and Extended Kalman-filter based
SLAM in [3]. This solution relies on natural landmark seen in the which are used calculate
homography, recovering the flight.

VISION-BASED PARTICLE FILTER LOCALIZATION

Motion model is used to estimate
aircraft pose according to UAV sensor
data. The search space is narrowed down
to pseudo-planar movement using only
three parameters (see figure 1), where
z, =(X,¥,0,,,) is the aircraft pose on e
time t and 0, is the UAV heading @ ~C §rog + Ene
angle. Motion model implementations for
movement in planar space can be found in Fig. 1. Simplified planar motion model for UAV
[11]. Template matching technique is used on a two-dimensional map
to calculate similarity between image viewed by the camera and cropped image from map on
the hypothesized UAV pose. Three popular template matching functions from OpenCV [2]
library were adapted to calculate image similarity R between camera image T and cropped
map image | , using these formula:
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and w, h image dimensions (width and height).

Particle filter localization (or Monte Carlo localization) is a recursive Bayes filter that
estimates the posterior distribution of robot poses conditioned on sensor data [12]. The
probability distribution of the a particle is described in the form p(z, | z,, ,,m,, ;) , Where z, is

robot pose on time t andm, is sensor data (may be IMU, barometer, wind speed and other

data used for dead-reckoning) on time t. Probability density function for the particles is
obtained by calculating image similarity R with formulas Rsqp, Rccorr, Recoerr-
To map the similarity to probability space we use simple min-max normalization
b:m, then we can represent the UAV  pose belief as
Rmax - Rmin
bel(z,) = p(z, | Zoy ;.M. 1,0, ;) - The next iteration of particle filter begins after some time

by estimating the UAV motion, capturing new imagery from camera and selecting particles
from previous iteration. This part of the particle filter is called sampling.

Sampling is the stage of the Particle Filter when particles are re-sampled according to
their belief. Each iteration resamples particles to find the most plausible UAV location over
time. Few sampling techniques were selected for comparison — Rejection Sampling [13],
Importance Sampling [9] and KLD-Sampling [6].The principle of rejection sampling is to
evaluate randomly selected particle to survive with a probability equal to it’s belief.
Importance sampling was introduced to deal with higher uncertainty in the measurements.
This sampling technique uses weight w, (calculated by normalising all probabilities) to
resample the particles. The higher particle belief is, the larger weight it gets and a particle is
more likely to be resampled. KLD-sampling is an extension of the importance sampling. It
uses Kueller — Leiblach distance to dynamically calculate required number of particles for
the filter without the loss of accuracy.
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EXPERIMENTAL RESULTS

Experiments are made in simulated environment
where the flight of UAV is simulated in a planar
coordinates of the map. Grayscaled map and images are
used to speed up image matching procedure. The map is
located in a suburb region of Lentvaris, Lithuania. An
example search of UAV location is presented in figure 2,
where 500 particle are scattered uniformly over an area of
a map (fig. 2, a) to localize the true UAV pose. Images of
a hypothesized location are cropped out of the map, re-
scaled and simulate real flight imaging conditions by
adding noise. To compare the image matching
coefficients, we generate a set of 500 particle hypothesis
and calculate image matching with the image of the
ground truth location to preview the calculated
coefficients.

The effectiveness of sampling algorithm is measured
by percentage of successful convergences to the ground
truth pose (best particle is not further from ground truth
then 15 meters/50 pixels) after 50 iterations. 100 start
locations are randomly selected and each sampling
algorithm is evaluated using same starting conditions — 350
particles are uniformly distributed in a radius of 250 meter
(833 in pixels) of ground truth position (worst case GPS
accuracy is 156 meters). Image size of 400 x 400 was
selected to be cropped out of the map, imitating a flight at
around 100 meter altitude.

b: Particles at final location

Fig. 2. Hypothesized UAV
locations on the known map

COMPARISON OF IMAGE MATCHING FUNCTIONS

CCORR function (see fig. 3,b and 3, e) does not distinguish any poses from the
common, there are many peak values which will survive during localization and it may take
considerable time to filter out the final pose. SQDIFF function (see fig. 3, ¢ and 3, f) contains
a lot of zero values, which will certainly be omitted during sampling. This causes a very
early pose convergation. Particle Filter requires some iterations to collect enough evidence
over time to select a proper pose. Meanwhile, CCOEFF (see fig. 3, a and 3, d) has few high
probability particles and others are in a low probability zone. This allows ensure survival of
the very probable locations, but other locations are still left for consideration with lower
probability. The dashed vertical lines marks 5 nearest to ground truth particles. Correlation
coefficient (CCOEFF) with min-max normalization will be used for experiments in the next
section.
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Fig. 3. Image similarity coefficients
SAMPLING ALGORITHM COMPARISON

Table shows the experimental results of the algorithm comparison. Ending particle
count is the average particle count at the last iteration of the algorithm. Rejection and
importance sampling algorithms has fixed particle counts and the KLD-sampling particle
count is variable over time. Average time is calculated by adding up execution time of each
100 flight starting point tests. Experiments were concluded on a Intel i5-4200M processor
with 3,1 GHz operating frequency. The average duration is the same for rejection and
importance sampling, but KLD is faster with the similar, but slightly better success rate.
KLD sampling uses more than 3 times less particles after 50 iterations.

Comparison of sampling algorithms

Sampling End particle count Average duration, s Successful localization
Rejection 350 235 87 %
Importance 350 234 94 %
KLD 83.8 131 96 %

CONCLUSIONS AND FUTURE WORK

Comparison of image matching functions and sampling algorithms used in Particle
Filter localization was presented in this paper. Image matching function - correlation
coefficient (after min-max normalization) was identified to be most fit for particle belief
representation. KLD sampling technique has proved to be as accurate as other sampling
techniques, but by adapting particle count reduces computational load when it is not
necessary. KLD sampling technique has shown to be at least 1,7x times faster than other
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sampling techniques with comparable localization success rate. The experiments with KLD
sampling is planned with real life flight imagery and UAV sensor data. Localized pose with
GPS location and other vision based localization techniques.
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