Logo BSU

Please use this identifier to cite or link to this item: https://elib.bsu.by/handle/123456789/12784
Title: Резольвента положительного элемента упорядоченной банаховой алгебры
Authors: Алехно, Е. А.
Keywords: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика
Issue Date: 2010
Citation: Труды 5-й междунар. конф. "AMADE-2009 ", Т. 1, С. 19-24.
Abstract: Let $A$ be an ordered Banach algebra with a unit $e$. If $z\in A$, $z\ge 0$, then an order idempotent $b$ (that is, $0\le b\le e$ and $b^2=b$) is called $z$-invariant whenever $(e-b)zb=0$. Formulas for the resolvent $R(.,z)$ of an element $z$ which has invariant order idempotents, are obtained. Some applications to the coeffcients of Laurent series expansion of $R(.,z)$ around the spectral radius $r(z)$ are given.
URI: http://elib.bsu.by/handle/123456789/12784
Appears in Collections:Архив статей механико-математического факультета до 2016 г.

Files in This Item:
File Description SizeFormat 
AMADE2009Alekhno.pdf454,84 kBAdobe PDFView/Open
Show full item record Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.