Please use this identifier to cite or link to this item:
https://elib.bsu.by/handle/123456789/12784
Title: | Резольвента положительного элемента упорядоченной банаховой алгебры |
Authors: | Алехно, Е. А. |
Keywords: | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика |
Issue Date: | 2010 |
Citation: | Труды 5-й междунар. конф. "AMADE-2009 ", Т. 1, С. 19-24. |
Abstract: | Let $A$ be an ordered Banach algebra with a unit $e$. If $z\in A$, $z\ge 0$, then an order idempotent $b$ (that is, $0\le b\le e$ and $b^2=b$) is called $z$-invariant whenever $(e-b)zb=0$. Formulas for the resolvent $R(.,z)$ of an element $z$ which has invariant order idempotents, are obtained. Some applications to the coeffcients of Laurent series expansion of $R(.,z)$ around the spectral radius $r(z)$ are given. |
URI: | http://elib.bsu.by/handle/123456789/12784 |
Appears in Collections: | Архив статей механико-математического факультета до 2016 г. |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
AMADE2009Alekhno.pdf | 454,84 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.